Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Isolated human microphthalmia/anophthalmia, a cause of congenital blindness, is a clinically and genetically heterogeneous developmental disorder characterized by a small eye and other ocular abnormalities. Three microphthalmia/anophthalmia loci have been identified, and two others have been ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Ocular retardation (or) is a murine eye mutation causing microphthalmia, a thin hypocellular retina and optic nerve aplasia. Here we show that mice carrying the orJ allele have a premature stop codon in the homeobox of the Chx1O gene, a gene expressed at high levels in uncommitted retinal ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 282 (1979), S. 511-513 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fig. 1 Fibroblasts prepared by trypsin digestion from 1-d-old dystrophic (a) and normal (b] chicken muscle stained with antiserum to tubulin. In both cell types a similar cytoplasmic network of microtubules is clearly evident. Scale bar, 5 ??. To obtain dystrophic chicken cells, we used chickens ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 13 (1989), S. 83-93 
    ISSN: 0886-1544
    Keywords: retinal pigment epithelium ; cytoskeleton ; focal contacts ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Retinal pigment epithelial (RPE) cells maintained in organ culture on Bruch's membrane and the associated choroid spread and migrate into a linear wound along the exposed basal lamina. Changes in cell shape, in the organization of microfilaments, and in cell-cell and cell-substratum interactions during this time were examined by epifluorescence and transmission electron microscopy. In contrast to cuboidal stationary cells distant from the wound edge, which display well-developed apical circumferential microfilament bundles (CMBs) associated with zonulae adhaerentes junctions, the migrating RPE cells near the wound edge instead are flat, and, in addition to microfilament bundles near junctions between adjacent cells, display prominent stress fibers. Furthermore, monoclonal antibodies to vinculin labeled regions at the terminal ends of these stress fibers indicating that the RPE cells form focal contacts with the basal lamina at these sites. Electron microscopy of these regions of cell-substratum interaction confirmed the presence of microfilament bundles that terminate on the cell membrane. Folds present in the basal lamina near these sites suggest that tension is being generated by the microfilaments in the stress fibers as the migrating cells pull on the underlying basal lamina through these adhesion points.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 17 (1990), S. 46-58 
    ISSN: 0886-1544
    Keywords: circumferential microfilament bundles ; intercellular adhesion ; cytoskeleton ; junctional complex ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The junctional complexes in chick retinal pigment epithelial (RPE) cells in situ contain unusually large zonulae adhaerentes (ZAs) composed of subunits termed zonula adhaerens complexes (ZACs). To determine whether the properties of the ZAs differ between RPE cells which contain ZACs, and MDCK cells which lack ZACs, we investi-gated the effects of treatment with trypsin and/or low Ca2+ by transmission electron microscopy and staining for F-actin. Treatment of RPE cells for 1 h with trypsin alone has no apparent effect on the morphology of the ZA in either MDCK or RPE cells. In contrast to the ZAs in MDCK cells, which split after 3 min in low Ca2+, the ZAs in chick RPE cells stay intact even after 2 h, although the intermembrane discs, i.e., the extracellular components of the ZACs, are no longer visible. After 30 min of treatment with trypsin and low Ca2+, the ZAs split in both cell types. The CMBs start to contract, translocate toward the cell interior, and eventually disappear. This process continues even when the RPE cells are returned to normal medium. New ZAs, composed of ZACs, form between RPE cells 3 h after return to normal medium. These findings suggest that the ZACs in the ZAs of RPE cells are not directly responsible for the increase in resistance to low Ca2+. They also show that the ZA-junctions in RPE cells are not only structurally different from those previously examined, but also behave differently in response to experimental manipulation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 17 (1990), S. 133-141 
    ISSN: 0886-1544
    Keywords: contractile ring ; cytoskeleton ; cell division ; cytokinesis ; zonula adhaerens ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: To examine the behaviour of the apical circumferential microfilament bundles (CMBs) associated with the zonula adhaerens (ZA)-junctions during mitosis, retinal pigment epithelial cells were labelled for F-actin, and retinas were serially sectioned for TEM. The results show that the ZA-CMB-complex persists throughout all stages of mitosis. At metaphase, the cells round up, but stay joined apically to adjacent cells by ZA-junctions. At telophase, the cleavage furrow forms asymmetrically from the basal end progressively toward the apical end, where the daughter cells remain connected by an intercellular bridge (IB). As the cleavage furrow with the contractile ring (CR) approaches the CMB, the two microfilament (MF) systems are oriented perpendicularly to each other. At the level of the CMB, the MFs of the CR connect the opposite sides of the CMB and bisect it into two CMBs, one for each of the two daughter cells. Subsequently, the CR in the IB splits into two, one on either side of the midbody. The two daughter cells, having acquired a complete CMB of their own, do not become direct neighbours, since adjacent cells, which remain joined to the apical ZA-junction of the dividing cell, are observed in the cleavage furrow, where they meet and form a ZA-junction between themselves, just below the IB. Separation of the daughter cells without losing contact with neighbouring cells at the level of the apical ZA-junction thus maintains the integrity of the epithelial sheet during mitosis.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Key words Endothelial cells ; Metastasis ; Actin filaments ; Cell ; cell interactions ; Tumor necrosis factor ; Confocal microscopy ; Man
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  An in vitro system has been established to study the migration of human melanoma cells through a monolayer of endothelial cells. Endothelial cells were cultured to confluence on Matrigel before the seeding of melanoma cells. Laser scanning confocal microscopy showed that, prior to migration, melanoma cells appeared round and showed cortical F-actin staining. The initial stage of transmigration was characterized by numerous membrane blebs protruding from basolateral surfaces of the melanoma cells, and contact regions showed an abundance of filaments arising in the underlying endothelial cells. Later, pseudopods from the melanoma cells inserted into contact regions between endothelial cells. Eventually, the melanoma cells intercalated with the endothelial cells. At this stage, many endothelial filament bundles terminated at contacts between the endothelial cells and the transmigrating melanoma cell, suggesting active interactions between the two cell types. Upon contact with the Matrigel, melanoma cells began to spread beneath the endothelium, displaying a fibroblastic morphology with prominent stress fibers. To reestablish the monolayer, adjacent endothelial cells extended processes over the melanoma cell. Tumor necrosis factor α did not affect the transmigration of melanoma cells from cell lines isolated from several stages of metastasis. However, tumor necrosis factor did promote the transmigration of melanoma cells derived from a non-metastatic lesion. These results thus define cell attachment and cell penetration of the monolayer as two distinct steps in transmigration and suggest that tumor necrosis factor may enhance the metastatic potential of tumor cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 248 (1987), S. 95-101 
    ISSN: 1432-0878
    Keywords: Retina ; Pigment epithelium ; Cytoskeleton ; En face preparations ; Microfilaments ; Microfilament-associated proteins ; Chick embryos
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Gelatin-coated slides were used to obtain en face preparations of retinal pigment epithelium (RPE) from 6-to 21-day-old chick embryos in order to study the distribution of F-actin in microfilaments (MF) and the MF-associated proteins, myosin, tropomyosin,α-actinin and vinculin in situ at different stages of development by fluorescence microscopy. The epithelial sheets were fixed in formaldehyde and then extracted in a solution containing 0.1% Triton X-100. NBD-Phallacidin was used to visualize the F-actin in MF, and antisera against myosin, tropomyosin,α-actinin and vinculin were used to determine the distribution of these four MF-associated proteins. F-actin, myosin, tropomyosin,α-actinin and vinculin were present in cortical rings around the apical ends of the RPE cells throughout this period of development. Of these proteins, only F-actin was identified in the apical processes of RPE cells. The increase in the amount of F-actin could be followed as the length and the number of apical processes increased with age and maturation of RPE cells. F-actin was first detected in numerous short apical processes on the surface of each RPE cell on day 12. From day 12 to day 17, they were at an intermediate stage of elongation and from day 17 onward all of the RPE cells had long F-actin-containing apical processes. These results indicate that the F-actin-containing MF assemble much later in the apical processes than in the cortical rings. Also the cortical rings and apical processes of RPE cells resemble those in absorptive intestinal cells in that the cortical rings in both cell types contain MF associated with myosin, tropomyosin,α-actinin and vinculin while the MF in the apical processes and microvilli lack these MF associated proteins, and both of these structures lack talin. In addition to apical processes and cortical rings, stained fibers were also observed at a level below the cortical rings. The simple and highly reproducible en face method described is useful for determining changes in the organization of cytoskeletal components and other macromolecules in RPE cells and other epithelial cells in situ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 259 (1990), S. 455-461 
    ISSN: 1432-0878
    Keywords: Adherens-type junction ; Development ; Microfilaments ; Retinal pigment epithelium ; Chick
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Retinal pigment epithelial cells from chicks at various stages of development were examined by transmission electron microscopy to determine how the adult form of the zonula adhaerens, composed of subunits termed zonula adhaerens complexes, is acquired. During early stages of development, between embryonic day 4 and embryonic day 7, the intermembrane discs of zonula adhaerens complexes appear to be formed from material already present between the junctional membranes of the zonulae adhaerentes. In contrast, the cytoplasmic plaque material of the zonulae adhaerentes is difficult to detect before hatching; it is seen as a dense band along the junctional membranes at hatching and as individual subunits in register with the intermembrane discs in adult retinal pigment epithelial cells. After embryonic day 16, when the zonulae adhaerentes increase dramatically in size, single zonula adhaerens complexes are also present basal to the zonulae adhaerentes along the lateral cell membrane. This suggests that, during later stages of development, the junctions grow in size and/or turn over by the addition of pre-assembled zonula adhaerens complexes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0878
    Keywords: Aorta ; Endothelium ; Centriole ; Organ culture ; Porcine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution of centrosomes in porcine vascular endothelial cells of the thoracic aorta maintained in organ culture was determined in en face preparations using immunofluorescence. Rectangular pieces of aorta that had the distal half (with respect to the heart) of their endothelial surface gently denuded with a scalpel blade and pieces with intact endothelium were cultured for up to 96 h. At time 0, centrosomes were found to be preferentially oriented toward the heart, both in the cells of intact monolayers and in cells at the wound edge. This distribution was maintained in the intact monolayers for at least 24 h, but by 72 h the number of centrosomes in the center of the cells exceeded the number oriented toward the heart as the cells changed from a fusiform to a polygonal shape. The centrosomes of most endothelial cells at the wound edge began to redistribute themselves within the first 24 h in culture, moving from a position toward the heart to a position either in the center of the cell or away from the heart. By 72 h, the majority of centrosomes in endothelial cells at the wound edge were oriented away from the heart toward the denuded region. It is concluded that the centrosomes in the endothelial cells maintained in organ culture respond to injury in a manner similar to those grown in monolayer cell culture except that the reorientation of centrosomes occurs more slowly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...