Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Ultrastructure ; Fetus ; Nervous system ; GM1-gangliosidosis type 1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The nervous system of a 22-week-old fetus with GM1-gangliosidosis type 1 was studied by electron microscopy. The tissues thus examined were the cerebral cortex at the parietal region, the cerebellum, the thoracic spinal cord, the Auerbach's myenteric plexus in the large intestine and the radial nerve fibers. In the cerebral cortex, membrane-bound vacuoles, which occasionally contained stacks of fine fibrils, were observed in the large young neurons in the deeper part of the cortical plate. The neurons in the other part of the cerebral cortex carried no storage materials. In the cerebellum, the membrane-bound vacuoles with stacks of fine fibrils were seen only in the Purkinje cells. The neurons in the spinal cord also contained several zebra-like bodies and the above membrane-bound vacuoles. As for the peripheral nervous system (PNS), neurons in the Auerbach's myenteric plexus carried membranous cytoplasmic bodies and zebra-like bodies. Some of the axons in the radial nerve fibers also contained a lot of pleomorphic electron-dense bodies and a few membranous cytoplasmic ones. These results show that the accumulation of storage materials is started in the large neurons which are produced in the early stage of neurogenesis in the central nervous system (CNS). Additionally, the observed membrane-bound vacuoles are considered to be structures which occur before the membranous cytoplasmic bodies and/or the zebra-like bodies. It is also elucidated that the PNS is affected earlier than the cerebral and cerebellar cortices and thoracic spinal cord.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The pulse electric current sintering technique (PECS) was demonstrated to be effective in rapid densification of fine-grained Al2O3/3Y-ZrO2 using available commercial powders. The composites attained full densification (〉99% of TD) at 1450°C in less than 5 min. The composites sintered at a high heating rate had a fine microstructure. The incorporation of 3 vol% 3Y-ZrO2 substantially increased the average fracture strength and the toughness of alumina to as high as 827 MPa and 6.1 MPa·m1/2, respectively. A variation in the heating rate during the PECS process influenced grain size, microstructure, and strength, though there was little or no variation in the fracture toughness.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Mullite–boron nitride (BN) composite with high strength, low Young's modulus, and highly improved strain tolerance was prepared by reactive hot pressing (RHP) using aluminum borates (9Al2O3·2B2O3 and 2Al2O3·B2O3) and silicon nitride as starting materials. Compared with the monolithic mullite, the composite RHPed at 1800°C showed 1.64 times (540 MPa) the strength, 70% (153 GPa) the Young's modulus, and 2.34 times (3.53 × 10−3) the strain tolerance. Transmission electron microscopy observation revealed that the composite had an isotropic microstructure with a fine mullite matrix grain size of less than 1 μm and nanosized hexagonal BN (h-BN) platelets of about 200 nm in length and 60–80 nm in thickness. The high strength was suggested to be from the reduced matrix grain size and the small toughening effect by the h-BN platelets.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 9 (1990), S. 219-221 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 6 (1987), S. 528-530 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 8 (1989), S. 47-48 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 18 (1999), S. 809-811 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 29 (1994), S. 5801-5807 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The liquid-phase sintering process of α′-sialon ceramics has been investigated by high-temperature dilatometry and microstructural observation. In addition, isothermal shrinkage measurements have been performed to examine the densification kinetic parameter. It has been confirmed that densification kinetic parameters in the solution-reprecipitation stage are much larger than the rate exponent predicted for the classic liquid-phase sintering model, and are slightly smaller than that for the viscous flow process. Rapid shrinkage was observed in the solution-reprecipitation stage from the results of shrinkage rate, and corresponds to pore elimination by particle rearrangement and cooperative flow of particle/liquid mixture. These processes provide the major contribution to shrinkage. In addition, the liquid flow process occurs when the silica content in the raw powder increases, but it is retarded due to the formation of α′-sialon. It is anticipated that particle rearrangement and cooperative flow, as well as liquid-flow processes, take place in the solution-reprecipitation stage of sintering of Si3N4-based materials, and cause a large amount of shrinkage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 26 (1991), S. 2608-2614 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Silicon oxynitride ceramics are formed by reaction sintering of silicon nitride and silica with certain metal oxide additives. The reaction rate during sintering and the subsequent properties of silicon oxynitride are affected by the quantity and kinds of additives. The reaction rate increased for addition of equal molar amounts of ZrO2, ZrO2 (+2.8 mol % Y2O3), AlO1.5, LnO1.5, CeO2, MgO, in that order (where Ln=Nd, Sm, Gd, Dy, Er, Yb and Y). The lanthanide oxide (1.5 mol %)-doped silicon oxynitride ceramics had a high fracture toughness, because crack deflection occurred due to the precipitation of an intergranular crystalline phase with a high thermal expansion coefficient compared with silicon oxynitride. The oxidation rate was higher with an increasing quantity of additive. In samples containing an intergranular crystalline phase, stability of the crystalline phase is an important factor and could impair the oxidation resistance of silicon oxynitride ceramics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 26 (1991), S. 2608-2614 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Silicon oxynitride ceramics are formed by reaction sintering of silicon nitride and silica with certain metal oxide additives. The reaction rate during sintering and the subsequent properties of silicon oxynitride are affected by the quantity and kinds of additives. The reaction rate increased for addition of equal molar amounts of ZrO2, ZrO2 (+2.8 mol % Y2O3), AlO1.5, LnO1.5, CeO2, MgO, in that order (where Ln=Nd, Sm, Gd, Dy, Er, Yb and Y). The lanthanide oxide (1.5 mol %)-doped silicon oxynitride ceramics had a high fracture toughness, because crack deflection occurred due to the precipitation of an intergranular crystalline phase with a high thermal expansion coefficient compared with silicon oxynitride. The oxidation rate was higher with an increasing quantity of additive. In samples containing an intergranular crystalline phase, stability of the crystalline phase is an important factor and could impair the oxidation resistance of silicon oxynitride ceramics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...