Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 3938-3941 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The room temperature photoinduced fluorescence decay of isolated trans-stilbene and trans-stilbene in the presence of 1 atm of Ar gas was measured as a function of the excitation laser frequency. Lifetimes were measured both to the blue and the red of the ground vibrational state of the ground electronic state (S0) to the ground vibrational state of the S1 state transition frequency ω00. The lifetime was found to decrease on both sides of ω00. The dependence of the decay rate on laser frequency in the presence of Ar gas is much weaker than for the isolated molecule. Both observations corroborate previous theoretical predictions of laser cooling of thermal trans-stilbene upon excitation at the ω00 frequency. The experimental results are in good agreement with theoretical analysis. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 4493-4504 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Spontaneous fluorescence has been used to measure the coherent femtosecond response of the organic, binary crystal pentacene/p-terphenyl. By using two-pulse excitation with phase-randomized pulses in an interferometric setup and analyzing the variance of the fluctuating intensity of correlated fluorescence photons, femtosecond beatings have been observed. The pattern of these terahertz oscillations is strongly dependent on the detuning frequency range of the exciting pulses, but is rather invariant with regard to the spectral position of the fluorescence probe window. In the interferometric regime of freely propagating pulses novel, ultrafast fluorescence carrier-wave oscillations superimposed to the beat structure have been obtained. The oscillatory signals evolve from a coherent superposition of optical free induction decays, caused by the different electronic transition energies of the pentacene absorber sites O1, O2, O3, and O4, respectively, are monitored as intrinsic, heterodyne beats by the fluorescence square detector. The major part of oscillations is thus considered to result from typical polarization interferences, but vibrational quantum beats are also extractable from the interferogram in the ultimate frequency regime of the pentacene S0→S1ν=1, S0→S1ν=2 resonances. The early picosecond-decay of the fluorescence beats reveals the mechanism of the loss of coherence to be mainly controlled by inhomogeneous dephasing at low phonon temperatures. A model of uncoupled two-level systems that includes Gaussian inhomogeneous broadening of the individual absorber sites and a Gaussian frequency distribution for the excitation pulses can account for the experimental data, quite adequately. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 1702-1717 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Electronic excitations along sites that undergo spatial and temporal fluctuations due to conformational chain motion have been studied in the picture of the stochastic master equation by means of the dynamic Monte Carlo (DMC) and the cumulant expansion (CE) approach. An incoherent site-to-site hopping which is adiabatic relative to the changes of conformational site coordinates has been assumed. The elementary act of conformational change has been considered to be fast, whereas the electronic transfer during the time period of the conformational event has been assumed to be negligibly small. The time evolution of electronic intersite coupling is thus controlled by chromophore sites that, in particular, correspond to the conformational minima of the potential energy landscape. The generalized equations of motion adapted for both the DMC and the CE analysis have been reduced to formulate donor site excitation probabilities 〈Piexc(t)〉 and donor excitation survival functions 〈PD(t)〉 for a simplified chain. In this polymer model, (i) specific nearest-neighbor electronic coupling occurs with two distinct transfer rates W1 and W2 corresponding to two different spatial arrangements of the pendant sites in the pair and (ii) transitions between two definite conformational states occur both in the correlated and in the uncorrelated regime. For short chains and a moderate number of sites in the rotational dyads the whole range from the dynamic to the static limit in the interplay between excitation transfer and correlated conformational motion has been calculated by the DMC method. By means of the cumulant technique well-behaved solutions could be obtained only in the fast conformational transition regime which allows a direct comparison with the DMC results. For longer chains up to 100 sites, in the limit case of uncorrelated conformational motion, preliminary cumulant approaches have been given which, for very rapid conformational rates, agree well with the dynamic effective medium approximation (DEMA) solutions. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 69 (1947), S. 899-903 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The theoretical concept of nonexponential electronic S1 energy relaxation in nonrandom, polychromophoric polymers has been tested experimentally by means of picosecond time-resolved fluorescence spectroscopy. For the low-energy, sandwich-type excimer E2 of poly-(N-vinylcarbazole), p-N-VCz, in dilute liquid solution the fluorescence rise-profile FE2(t), collected at λem =460 nm, has been analyzed in terms of nonconventional relaxation kinetics. A time-dependent trapping function, k(t)=b+ct−1/2, which reflects both the "effective'' diagonal disorder and the pronounced low dimensionality of carbazole hopping sites in the fluid regime has been used in a first attempt to model migrational sampling in a sequence of excited-state relaxation processes. The kinetic scheme consists of a distribution of transport states {X1}, a small ensemble of energy-relaxed monomeric chromophores X2, and a discrete state of the mobile excimer X3 (E2) coupled to X2. Exact solutions to the δ-pulse response behavior {X1}, X2, and X3, respectively, can be found which contain typically nonexponential terms of the form of time-dependent pre-exponentials Aij(t). The functional forms of Aij(t) as well as their relevancy to picosecond and nanosecond time scales have been demonstrated by synthetic data simulation. The excimer δ-pulse trial function based upon this scheme has been shown to recover satisfactorily the experimental data. The limitations of the model, the uncertainties of rise curve analysis, in general, and the main problems encountered in rationalizing excited state transport and trapping parameters in the presence of rotational sampling have been discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A deterministic kinetic analysis has been presented in an attempt to model the δ-pulse dynamics of a monomer–excimer pair in presence of energy migration and detrapping. Because of the reversibility of the system and the formal treatment of excitation energy transport by means of a time-dependent rate function k(t), the linear first order equations of evolution are coupled and consist of nonautonomous coefficients. The formalism involves a linear, affine transform technique for decoupling the simultaneous rate equations. This procedure leads to nonlinear, but decoupled first-order Riccati equations which have been further transformed to yield a second-order differential equation with time-dependent coefficients. For k(t)=b+Ct−1/2, the present study develops approximate WKB solutions to the transient δ-pulse response behavior of the system under the condition of weak coupling. The limitation of this approach have been tested towards numerical computer results. The WKB solutions are well behaved at relatively long times and, thus, prove useful for providing the typical asymptotic behavior of a polychromophoric monomer–excimer system in which transport and trapping will proceed via a quasi-one-dimensional pathway. The physics of this treatment has been discussed on the basis of energy-dispersive hopping processes along the chromophor array of aromatic polymer with typical, diagonal disorder. The analytical solutions, however, might have more general significance, presumably, with respect to forthcoming, subnanosecond reconvolution procedures in the transient fluoresence analysis of dilute aromatic vinylpolymers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The transient fluorescence profiles of 1,3-di(N-carbazolyl)-propane, DCP, were reinvestigated as a function of temperature in toluene as solvent. Typically three-exponential patterns, both for the low-energy, red edge fluorescence of the excimer FE(t) and, in part, for the monomer fluorescence FM(t) were observed in the moderate temperature range −15≤t/°C≤55, whereas at temperatures t/ °C〉55 profiles were found to be approximately biexponential, within the limitations of time resolution. On the premises given in Sec. IV of this work, data were analyzed in terms of a discrete three-state model which assumes two monomeric conformers (X1=tt, X2=tg±) and a single excimer-forming conformation (X3=g(minus-plus)g±) interconverting in an open, linear scheme. Starting from a generalized treatment of n-particle interaction, the analytical δ-pulse solutions to the fluorescence evolutions X1(t), X2(t), and X3(t) were formulated in terms of 18 amplitudes Aij(k) (i, j=1,2,3) and 3 eigenvalues τj =−1/Tj ( j=1,2,3) for two different, initial boundaries (k=1,2). For reasonable choices of fluorescence rate constants, the simulated parameters proved useful (a) to recover satisfactorily the experimental subnanosecond (T1) and nanosecond time constants (T2,T3), (b) to rationalize the biexponential rise of excimer fluorescence at moderate temperatures, and (c) to explain the pseudo-Birks behavior in the high-temperature regime. Results from both experiments and computation allow to specify the time scales of rotating carbazole chromophores, and they strongly indicate that the rapid conformational equilibrium hypothesis is not valid in DCP. The limitations of the minimal model have been addressed and the potential problem encountered in analyzing the data by a discrete set of multiexponentials has been discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 3744-3761 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An ensemble of distributed donor molecules that undergoes rotational transitions into a discrete excimer state has been analyzed, in an attempt to model distributed electronic relaxation and nonexponential fluorescence of aromatic polymers in presence of rotational sampling processes. In case of irreversible trapping, the donor survival function has been formulated in terms of the one-sided Laplace transform and specified for a modified Gaussian distribution to yield a closed-form expression for the donor decay. The formalism permits a time-dependent rate function to be derived that makes possible the construction of the excimer excitation function by means of the convolution theorem. In case of reversible constraints, a generalized treatment based upon time-dependent transition and transform matrices has been given which applies a perturbation technique for approximately solving the system of nonautonomous differential equations in the time domain. In the limit of weak coupling, the method develops approximate Mth order expressions (M=2,4,6, and 8) to the fluorescence response functions of donor and excimer. The perturbational solutions are well behaved up to relatively long time scales and they prove useful for providing the typical nonexponential time behavior of such a system affected by dispersion and dissociation. The physical restriction of this mathematical analysis (weak reversibility) has been addressed and the implications of distributed event times in future analyses of polymer fluorescence have been discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 61 (1989), S. 170-173 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...