Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: c-jun ; cell cycle ; apoptosis ; antisense ; growth deprivation ; F-MEL ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: F-MEL cells were transfected with the c-jun antisense gene located downstream of a glucocorticoid-inducible MMTV promoter, and the obtained cells were named c-jun AS cells. When the c-jun AS cells were treated with dexamethasone (DEX) in DMEM supplemented with 10% serum, the growth of the cells was completely suppressed for a duration of 16 days with a high cell viability exceeding 86%. The c-jun expression in the c-jun AS cells was suppressed moderately in the absence of DEX and strongly in the presence of DEX. The c-jun AS cells grew well and reached a density of 106 cells/mL without supplementation of any serum components. Viability was greater than 80% after the cells had been cultured for 8 days in the absence of DEX. The c-jun AS cells stayed at a constant cell density and high viability above 80% for 8 days when they were cultured in the presence of DEX under serum deprivation. In contrast, the wild type F-MEL cells were unable to grow and died by apoptosis in 3 days under serum deprivation. Internucleosomal cleavage of DNA, a landmark of apoptosis, was clearly detectable. Thus the c-jun AS cell line that is resistant to apoptosis induced by serum deprivation and can reversibly and viably be growth-arrested was established. A dual-signal model was proposed to explain the experimental result, the interlinked regulation of apoptosis, and growth by c-jun.© 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:65-72, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0778
    Keywords: apoptosis ; bcl-2 ; COS cell ; myeloma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract COS, myeloma and HeLa cells, which are commonly used for protein production by cell culture, were transfected with human bcl-2 gene encoded on the shuttle vector BCMGS. Expression of human bcl-2 improved survival of cells remarkably, mildly, or negligibly for COS, myeloma, and HeLa, respectively. Four clones were obtained from the human bcl-2 expressing cell population of COS cells. They expressed human bcl-2 almost at the same level. The viable cell numbers were 6, 2.5, 2.5, and 0.8 times as many for the clones #8, #5, #6, and #7, respectively, as for the control COS cells, when they were cultured at low (0.2%) serum concentration for 9 days. The bcl-2 overexpressing COS cells showed morphology different from that of the control COS cells in serum limited condition. When transfected with mouse lambda protein gene carried by an SV40-derived vector, clone #8 of the bcl-2 transfected COS cells continued the transient expression of lambda protein longer than the control COS cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0778
    Keywords: antisense ; apoptosis ; cell cycle ; c-jun ; protein production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Expression of c-jun gene induces apoptosis ofcells cultured in serum-free medium. It also promotescell-cycling in serum-containing medium, leading cellsto die by overgrowth. Previously, we established anapoptosis-suppressible, cell-cycle arrestable cellline, c-jun AS, by transfecting Friend murineerythroleukemia (F-MEL) cells with adexamethasone-inducible antisense c-jun gene.Induction of the antisense c-jun transcriptionwith dexamethasone suppressed c-jun expression.As a result, c-jun AS cells survived inserum-free medium containing dexamethasone for a longtime, while F-MEL cells died quickly in the presenceor absence of dexamethasone. In serum-containingmedium, the growth of c-jun AS cells was viablyblocked by inducing antisense c-juntranscription, and the cells survived at thenon-growth state avoiding overgrowth. In the presentstudy, protein productivity of c-jun AS cellswas examined in comparison with that of wild typeF-MEL cells. C-jun AS and F-MEL cells werefurther transfected with a vector for expressingalkaline phosphatase as a protein to be produced, andnamed c-jun AS-SEAP and F-MEL-SEAP cells,respectively. In the serum-free medium withdexamethasone, c-jun AS-SEAP cells produced theprotein for up to 6 days, while F-MEL-SEAP cellsstopped production on day 3 due to cell death causedby serum deprivation. In the serum-containing mediumwith dexamethasone, c-jun AS-SEAP cells wereviably arrested in the cell cycle, and cell death dueto overgrowth was avoided. As the result, they couldproduce the protein for up to 18 days, whileF-MEL-SEAP cells stopped production within 7 days dueto cell death caused by overgrowth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...