Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 23 (1991), S. 495-537 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 13 (2001), S. 997-1015 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The approximate deconvolution model (ADM) for the large-eddy simulation of incompressible flows is detailed and applied to turbulent channel flow. With this approach an approximation of the unfiltered solution is obtained by repeated filtering. Given a good approximation of the unfiltered solution, the nonlinear terms of the filtered Navier–Stokes equations can be computed directly. The effect of nonrepresented scales is modeled by a relaxation regularization involving a secondary filter operation. Large-eddy simulations are performed for incompressible channel flow at Reynolds numbers based on the friction velocity and the channel half-width of Reτ=180 and Reτ=590. Both simulations compare well with direct numerical simulation (DNS) data and show a significant improvement over results obtained with classical subgrid scale models such as the standard or the dynamic Smagorinsky model. The computational cost of ADM is lower than that of dynamic models or the velocity estimation model. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 13 (2001), S. 2985-3001 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A formulation of the approximate deconvolution model (ADM) for the large-eddy simulation (LES) of compressible flows in complex geometries is detailed. The model is applied to supersonic compression ramp flow where shock-turbulence interaction occurs. With the ADM approach an approximation to the unfiltered solution is obtained from the filtered solution by a series expansion involving repeated filtering. Given a sufficiently good approximation of the unfiltered solution at a time instant, the flux terms of the underlying filtered transport equations can be computed directly, avoiding the need to explicitly compute subgrid-scale closures. The effect of nonrepresented scales is modeled by a relaxation regularization involving a secondary filter operation and a dynamically estimated relaxation parameter. Results of the large-eddy simulation of the turbulent supersonic boundary layer along a compression ramp compare well with filtered DNS data. The filtered shock solution is correctly predicted by the ADM procedure, demonstrating that turbulent and nonturbulent subgrid-scales are properly modeled. We found that a computationally expensive shock-capturing technique was not necessary for stable integration. As a consequence, the computational effort for simulations with ADM is approximately as large as for a coarse-grid DNS with a hybrid compact-upwind-ENO scheme, since the additional computational cost for the subgrid-scale model is more than compensated due to the fact that in the LES flux-derivatives can be computed by linear central finite differences on the entire domain. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and computational fluid dynamics 7 (1995), S. 141-157 
    ISSN: 1432-2250
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract One important alternative to spatial direct numerical simulation (SDNS) of a growing boundary-layer transition is a temporal direct numerical simulation (TDNS), where the flow is assumed to be locally parallel and the transition develops in time. To model nonparallel effects of a growing boundary layer, the TDNS allows the boundary layer to grow in time. This approach has been shown to be effective for an incompressible boundary layer. For a compressible boundary layer, however, a simple application of this approach has been found to be insufficient. To investigate this issue, we first split the variation of the flow field in the streamwise direction into a slowly evolving part and a fast and small-scale fluctuation part. By Taylor-expanding the slowly evolving large-scale part, this study shows that the Navier-Stokes operator can be reformulated as a power series of the perturbation parameter (x−x 0), yielding one set of equations for each power. Each set of these equations has a periodic solution in the streamwise direction, and therefore a modified TDNS method can be employed to solve these equations. Only the first set of the equations is considered in the applications presented. During the linear stage of transition, the results from this extended formulation show a significant improvement over those from the previous parallel flow formulation, especially for second modes which have short wavelengths. The results are well comparable with those from parabolized stability equations (PSE) and SDNS. A good agreement between this extended formulation and SDNS results is also demonstrated at the nonlinear stage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 51 (1993), S. 43-47 
    ISSN: 1573-1987
    Keywords: subharmonic transition ; Tollmien-Schlichting waves ; secondary instability ; direct numerical simulation ; symmetry breaking
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A direct numerical simulation of subharmonic transition to turbulence in channel flow has been performed. The stages of primary and secondary instability have been identified in the results leading to a staggered pattern of A-shaped vortices. The associated staggered symmetry has been found to persist up to rather late stages of the breakdown process. This symmetry rapidly disappears in the final stage of transition and a developed turbulent flow is attained. A pronounced difference in the development between the two channel halves is observed which is consistent with the predictions of secondary instability theory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of engineering mathematics 32 (1997), S. 103-120 
    ISSN: 1573-2703
    Keywords: gravity currents ; lock-exchange flow ; direct numerical simulation ; spectral method.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Technology
    Notes: Abstract A direct numerical simulation approach for the study of gravity currents in a plane channel is described. The numerical method employed is based on a mixed spectral/spectral-element discretization in space together with finite differences in time. For the validation of the code, simulations of Rayleigh–Bénard convection are performed and the results are compared with theoretical predictions and reference data from the literature. The dynamics of gravity currents is then studied by simulations of two-dimensional lock-exchange flow. The results obtained in these simulations are in good agreement with recent experimental data. By a systematic variation of the Grashof number the influence of viscous diffusion on the characteristics of the propagating fronts is assessed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 54 (1995), S. 223-234 
    ISSN: 1573-1987
    Keywords: transition ; compressible flow ; direct numerical simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The late stages of transition to turbulence in a Mach two boundary layer are investigated by direct numerical simulation of the compressible Navier-Stokes equations. The primary instability at this Mach number consists of oblique waves, which are known to form a pattern of quasi-streamwise vortices. It is found that breakdown does not follow immediately from these vortices, which decay in intensity. The generation of new vortices is observed by following the evolution of the pressure and vorticity in the simulation, and analysed by consideration of vorticity stretching. It is found that the slight inclined and skewed nature of the quasi-streamwise vortices leads to a production of oppositely signed streamwise vorticity, which serves as a strong localised forcing of the shear layer alongside the original vortices, formed by convection and stretching of spanwise vorticity. The shear layer rolls up into many new vortices, and is followed by a sharp increase in the energy of higher frequencies and in the skin friction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 1149-1163 
    ISSN: 0271-2091
    Keywords: Stokes Problem ; Chebyshev Approximation ; Spectral Method ; Penalty Formulation ; Splitting Scheme ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: To investigate the influences of time scheme, pressure treatment and initial conditions in incompressible fluid dynamics, a Stokes problem is solved numerically on a slab geometry within the framework of spectral approximation in space. Four algorithms are examined: splitting schemes, influence matrix method, penalty formulation and pseudo-spectral space-time technique. It is shown that splitting schemes are less accurate than the other processes. Furthermore, the initial field should respect a compatibility condition to avoid singularities at the initial time. If it is not possible to build such a compatible field, the numerical procedure has to present good damping properties at the first steps of the time integration.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...