Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 143 (1995), S. 115-122 
    ISSN: 1432-1424
    Keywords: Inward rectifier ; K channels ; Cl channels ; Differentiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Electrophysiological properties of mouse bone marrow-derived mast cells (BMMC) were studied under the whole-cell clamp configuration. About one third of the cells were quiescent, but others expressed either inward or outward currents. Inwardly rectifying (IR) currents were predominant in 14% of the cells, and outwardly rectifying (OR) currents in 24%. The rest (22%) of the cells exhibited both inward and outward currents. The IR currents were eliminated by 1 mm Ba2+, and were partially inhibited by 100 μm quinidine. The reversal potential was dependent on extracellular K+, thereby indicating that K+ mediated the IR currents. The negative conductance region was seen at potentials positive to E K. The OR currents did not apparently depend on the extracellular K+ concentration, but were reduced by lowering the extracellular Cl− concentration. The OR currents were partially blocked by 1 mm Ba2+, and were further blocked by a Cl− channel blocker, 4,4′-diisothiocyano-2, 2′-stilbenedisulfonate (DIDS). In addition, the reversal potential of the OR currents was positively shifted by decreasing the ratio of external and internal Cl− concentrations, suggesting that Cl− was a major ion carrier. In cells exhibiting IR currents, the membrane potential varied among cells and tended to depolarize by elevating the external K+ concentration. In cells with OR currents, the resting potential was hyperpolarized in association with an increase in conductance. These results suggest that BMMC have a heterogeneous electrophysiological profile that may underlie a variety of ion channels expressed in different phenotypes of mast cells. Activities of both the inwardly rectifying K+ channel and the outwardly rectifying Cl− channel seem to contribute to the regulation of the membrane potential.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 158 (1997), S. 59 -67 
    ISSN: 1432-1424
    Keywords: Key words: Osteoclast — Extracellular Ca2+— Cl− current — K+ current — G proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Effects of the extracellular Ca2+ concentration ([Ca2+] o ) on whole cell membrane currents were examined in mouse osteoclastic cells generated from bone marrow/stromal cell coculture. The major resting conductance in the presence of 1 mm Ca2+ was mediated by a Ba2+-sensitive, inwardly rectifying K+ (IRK) current. A rise in [Ca2+] o (5–40 mm) inhibited the IRK current and activated an 4,4′-diisothiocyano-2,2′-stilbenedisulfonate (DIDS)-sensitive, outwardly rectifying Cl− (ORCl) current. The activation of the ORCl current developed slowly and needed higher [Ca2+] o than that required to inhibit the IRK current. The inhibition of the IRK current consisted of two components, initial and subsequent late phases. The initial inhibition was not affected by intracellular application of guanosine 5′-O-(3-thiotriphosphate) (GTPγS) or guanosine 5′-O-(2-thiodiphosphate) (GDPβS). The late inhibition, however, was enhanced by GTPγS and attenuated by GDPβS, suggesting that GTP-binding proteins mediate this inhibition. The activation of the ORCl current was suppressed by pretreatment with pertussis toxin, but not potentiated by GTPγS. An increase in intracellular Ca2+ level neither reduced the IRK current nor activated the ORCl current. Staurosporine, an inhibitor for protein kinase C, did not modulate the [Ca2+] o -induced changes in the IRK and ORCl conductances. These results suggest that high [Ca2+] o had a dual action on the membrane conductance of osteoclasts, an inhibition of an IRK conductance and an activation of an ORCl conductance. The two conductances modulated by [Ca2+] o may be involved in different phases of bone resorption because they differed in Ca2+ sensitivity, temporal patterns of changes and regulatory mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 3117-3120 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Single molecule confocal microscopy is used to study fluorescence intermittency of individual ZnS overcoated CdSe quantum dots (QDs) excited at 488 nm. The confocal apparatus permits the distribution of "on" and "off" times (i.e., periods of sustained fluorescence emission and darkness) to be measured over an unprecedentedly large dynamic range (109) of probability densities, with nonexponential behavior in τoff over a 105 range in time scales. In dramatic contrast, these same τoff distributions in all QDs are described with remarkable simplicity over this 109-fold dynamic range by a simple inverse power law, i.e., P(τoff)∝1/τoff1+α. Such inverse power law behavior is a clear signature of distributed kinetics, such as predicted for (i) an exponential distribution of trap depths or (ii) a distribution of tunneling distances between QD core/interface states. This has important statistical implications for all previous studies of fluorescence intermittency in semiconductor QDs and may have broader implications for other systems such as single polymer molecules. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 1028-1040 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Single molecule confocal microscopy is used to investigate the detailed kinetics of fluorescence intermittency in colloidal II–VI (CdSe) semiconductor quantum dots. Two distinct modes of behavior are observed corresponding to (i) sustained "on" episodes (τon) of rapid laser absorption/fluorescence cycling, followed by (ii) sustained "off" episodes (τoff) where essentially no light is emitted despite continuous laser excitation. Both on-time and off-time probability densities follow an inverse power law, P(τon/off)∝1/τon/offm, over more than seven decades in probability density and five decades in time. Such inverse power law behavior is an unambiguous signature of highly distributed kinetics with rates varying over 105-fold, in contrast with models for switching between "on" and "off" configurations of the system via single rate constant processes. The unprecedented dynamic range of the current data permits several kinetic models of fluorescence intermittency to be evaluated at the single molecule level and indicate the importance of fluctuations in the quantum dot environment. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 8596-8609 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The dramatic modifications of molecular fluorescence in the proximity of a sharp nanoscopic probe is investigated by an apertureless or antenna-based near-field scanning optical microscope, which exploits the interactions between a fluorescent sample and a laser illuminated Si atomic force microscope probe. Specifically, luminescence is monitored from evanescently excited, dye-doped polystyrene nanospheres (RS=20–80 nm) on a fused silica prism surface as a function of probe-sample geometry. The incident laser field is enhanced in the near-field of the probe tip, resulting in images with high sensitivity (σmin(approximate)2 Å2 in a 1 Hz detection bandwidth) and strongly subdiffraction-limited spatial resolution. At probe-sample distances greater than (approximate)λ/2, the images are dominated by far-field interference between (i) direct fluorescence from the molecular sample and (ii) indirect fluorescence from image dipoles induced in the atomic force microscope probe. Near-field "shadowing" of the molecular fluorescence by the probe also occurs and is studied as a function of probe-sample-detector geometry. Finally, effects of probe-sample proximity on the fluorescence emission spectrum are investigated. In summary, the data elucidate several novel near- and far-field molecular fluorescence enhancement effects relevant to further development of molecular and nanostructural spectroscopic methods with spatial resolution well below the diffraction limit. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 199 (1994), S. 1128-1135 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 4242-4247 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We study the magnetic circular dichroism (MCD) of exciton states near the band edge of CdSe nanocrystallites (quantum dots). The experiment probes the difference between left and right circularly polarized transitions in the presence of an external magnetic field. Analysis of the MCD signal determines the sign and magnitude of the exciton g-factor which is shown to be highly sensitive to the energy band parameters used in the effective mass approximation. The observation of theoretically predicted changes in the sign of the exciton g-factor between the first two transitions is in agreement with recent theory describing the presence of fine structure underlying the optical transitions of CdSe nanocrystallites. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 9869-9882 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We study the luminescence of surface modified CdSe nanocrystallites. There has been much speculation as to the origin of the band edge emission in these quantum confined structures. Because of their large surface to volume ratios it has been suggested that the emission originates from surface-related states. However, recent theory suggests that the band edge luminescence arises from an optically inactive fine structure state or "dark" exciton. To address this issue we modify the surface of CdSe nanocrystallites with a variety of organic and inorganic ligands. We then monitor the effect changing the surface has on the energetics of the band edge luminescence through photoluminescence and fluorescence line narrowing experiments. Our results are compared with theoretical predictions for the nonresonant and resonant luminescence. We find good agreement between experiment and theory for CdSe nanocrystallites passivated with trioctylphosphine oxide, ZnS, 4-picoline, 4-(trifluoromethyl)thiophenol, and tris(2-ethylhexyl)phosphate. The lack of dependence of our data on surface modification is consistent with a dark exciton description of the band edge luminescence. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 51 (1987), S. 1054-1056 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We used metalorganic chemical vapor deposition to fabricate a planar-embedded InGaAsP/InP heterostructure laser with a semi-insulating InP current-blocking layer. The laser exhibits cw operation with a low, 20 mA threshold current and a high external differential quantum efficiency of 40% at room temperature. Measurements have also shown a small-signal frequency response of 10 GHz due to an extremely small parasitic capacitance of 3.5 pF.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Advances in Biophysics 17 (1984), S. 69-95 
    ISSN: 0065-227X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...