Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Keywords P-selectin ; E-selectin ; diabetic nephropathy ; advanced glycation endproducts ; macrophage.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In diabetic nephropathy leukocytes, mainly composed of monocytes/macrophages, which accumulate in the glomeruli and the interstitium, play an important part in the progression of glomerulosclerosis. The infiltration of leukocytes into inflammatory tissues or atherosclerotic lesions is mediated by adhesion molecules, which are expressed on the vascular endothelial cells, although little is known about the mechanism of leukocyte infiltration into diabetic renal tissues. P- and E-selectin are leukocyte adhesion molecules, which are expressed on the vascular endothelial cells and promote the adhesion of leukocytes to the endothelium. We investigated the expression of P- and E-selectin in the kidney tissue of patients with diabetic nephropathy and compared it with that of patients with other glomerular diseases (minimal change nephrotic syndrome, membranous nephropathy, IgA nephropathy, mesangioproliferative glomerulonephritis, and lupus nephritis). Expression of P- and E-selectin were both significantly increased in the glomeruli and the interstitium of patients with diabetic nephropathy as compared with those with other glomerular diseases. P- and E-selectin were both expressed along the glomerular capillaries and the peritubular capillaries in the interstitium. Neither P- nor E-selectin were correlated with the number of infiltrated leukocytes in the glomeruli, however, interestingly the E-selectin expression on peritubular capillaries was correlated with the number of infiltrated CD14 positive cells in the interstitium. These results suggest that E-selectin may play a key role in leukocyte infiltration into the renal interstitium in patients with diabetic nephropathy. [Diabetologia (1998) 41: 185–192]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Nitric oxide (NO) ; endothelial cell nitric oxide synthase (ecNOS) ; diabetic nephropathy ; afferent arterioles ; glomerular hyperfiltration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The overproduction of nitric oxide (NO) is reported in the diabetic kidney and considered to be involved in glomerular hyperfiltration. The precise mechanism of NO production in the diabetic kidney is, however, not known. In this report, we compare the localization of endothelial cell nitric oxide synthase (ecNOS) isoform expression in the kidney tissue of streptozotocin (STZ)-induced diabetic rats and 5/6 nephrectomized rats and clarify the pivotal role of ecNOS for the glomerular hyperfiltration in the early stages of diabetic nephropathy. In diabetic rats, the diameters of afferent arterioles, the glomerular volume, creatinine clearance, and urinary NO2/NO3 were increased after the induction of diabetes. Efferent arterioles were, however, not altered. Insulin or L-NAME treatment returned the diameters of afferent arterioles, glomerular volume, creatinine clearance, and urinary NO2/NO3 to normal. The expression of ecNOS in afferent arterioles and glomeruli of diabetic rats increased during the early stages of the disease, but was not altered in efferent arterioles. Treatment with either insulin or L-NAME decreased ecNOS expression in afferent arterioles and in glomeruli. In contrast, the ecNOS expression was upregulated in both afferent and efferent arterioles and in the glomeruli of 5/6 nephrectomized rats, where the dilatation of afferent and efferent arterioles and glomerular enlargement were observed. Treatment with L-NAME ameliorated the ecNOS expression and dilatation of arterioles. We conclude that enhanced NO synthesis by ecNOS in afferent arterioles and glomerular endothelial cells in response to the hyperglycaemic state could cause preferential dilatation of afferent arterioles, which ultimately induces glomerular enlargement and glomerular hyperfiltration. [Diabetologia (1998) 41: 1426–1434]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...