Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 142 (1994), S. 687-709 
    ISSN: 1420-9136
    Keywords: Strike-slip faulting ; earthquakes ; subsurface displacement and strain ; coseismic ; postseismic ; elastic dislocation theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A three-layer elastic-gravitational fault displacement model using dislocation theory has been developed and used to examine the effect of layering of earth elastic moduli on surface and subsurface displacement fields for a vertical strike-slip fault. The model has been used to examine the effect of depth variation of elastic properties at coseismic and postseismic time scales. For pure strike-slip motion the effect of gravity on coseismic and postseismic horizontal deformation is negligible. For coseismic deformation the model predicts that (for constant Poisson's ratio) an increase in elastic moduli with depth attenuates the displacements within the upper layers with respect to displacement distribution for a uniform half-space, while an inclusion of a soft layer between the top layer and lower half-space amplifies upper layer displacements. The effect of variation in Poisson's ratio on surface and subsurface displacements has also been examined. The effect of postseismic stress relaxation on surface and subsurface displacements for a three-layer model has been calculated and compared with that of a uniformly relaxed half-space model. Layer 1 is assumed to correspond to the upper crust, layer 2 the lower crust and layer 3 the upper mantle. The effect of postseismic stress relaxation within a uniform half-space and within just the lower crust and upper mantle has been examined. Stress relaxation within the whole half-space decreases the amplitude and shortens the wavelength of displacements, while stress relaxation within the lower two layers increases the amplitude and broadens the wavelength of displacements. The difference between uniform and layered postseismic relaxation is particularly pronounced at the base of the crust. Coseismic and postseismic normal and volumetric strains for a vertical strike-slip fault have also been examined. For a uniformly relaxed half-space model, an increase in normal strains is shown with respect to the coseismic elastic solution, whereas the postseismic volumetric strain is effectively zero. For a three-layer model with stress relaxation in the lower layers only, the normal and volumetric strains within the top elastic layer resemble coseismic strains, while in the lower layers which suffer a rigidity decrease, the postseismic volumetric strain is effectively zero.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 118 (1994), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Elastic dislocation theory has been modified to determine 3-D subsurface displacements for faults in a three-layer elastic-gravitational medium. A new set of kernel functions for Fourier-Bessel integrals describing subsurface displacements have been derived, using the Thomson-Haskell propagator matrix technique, and has been used to investigate the effect of layering and gravity on subsurface displacement fields. Within our three-layer model, layer 1 may be used to represent the seismogenic upper crust, layer 2 the ductile lower crust and layer 3 the ductile mantle.For a point source within the upper layer, lower layer rigidity moduli control the amplitude and wavelength of displacements within the upper layer and the relative distribution of uplift and subsidence within foot and hanging wall. Displacement variations, due to lower layer rigidity moduli changes, increase with depth and are profound at the base of the upper layer and within the lower layers. High-rigidity-moduli lower layers attenuate the upper layer displacement field, while a decrease gives amplification. The effect of gravity on the subsurface displacement field is more pronounced when the rigidity of the lower layers is small.The elastic-gravitational dislocation model has been used to examine co-seismic and post-seismic components of surface and subsurface displacement during extension of continental lithosphere. The model predicts surface co-seismic footwall uplift and hanging-wall subsidence; the co-seismic subsidence being greater than the uplift. Post-seismic relaxation of stress within the lower crust and mantle by post-seismic ductile deformation, gives an increase in footwall uplift and a decrease in maximum hanging-wall subsidence within the upper layer. A decrease in upper layer rigidity due to post-seismic brittle or plastic deformation within the upper crust leads to a decrease in the wavelength of surface footwall uplift and hanging-wall subsidence. The elastic-gravitational dislocation model has also been used to investigate the development of Moho topography during continental extension. Co-seismically Moho under footwall is predicted to uplift, while that under hanging wall subsides but by a smaller magnitude. During post-seismic relaxation Moho topography is predicted at first to increase in magnitude and then to decay. The existence of preserved Moho topography uplift associated with old continental rifts implies a finite long-term ductile strength within the lower crust and mantle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 111 (1992), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A quantitative model using elastic dislocation theory has been developed to model the near-field subsurface displacement field associated with faults and fault arrays within an elastic layer above an elastic half-space. A fault is modelled as a surface across which there is a discontinuity in prescribed displacements. Fault displacements may be oblique as well as dip-slip. The mathematical expressions for the surface and subsurface displacements are formed using the Thomson-Haskell matrix technique. Faults may intersect the free surface or may be blind. The model has been used to determine the 3-D surface and subsurface displacement fields for a rectangular fault with constant slip and for an elliptical fault on which the slip varies from a point of maximum displacement at the centre to zero displacement at an elliptical tip-line. The 3-D displacement field and associated strain tensor may be determined for individual slip events on a fault or for cumulative fault displacements. Displacement contour maps may be constructed for either originally horizontal, vertical or inclined horizons. The model has also been applied to multiple fault arrays.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 299 (1982), S. 540-542 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A fundamental property of normal intraplate lithosphere is that it exhibits no significant internal lateral distortion over time periods of the order of tens or hundreds of Myr as testified, for example, by the exactness of fit of the passive continental margins across the Atlantic1. This lack of ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Geotechnical and geological engineering 1 (1983), S. 253-260 
    ISSN: 1573-1529
    Keywords: Coal mining ; geophysics ; borehole log
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Conclusion Geotechnical and lithology data can be reliably derived from borehole geophysical logs. The advantages of deriving geotechnical and lithology data directly from geophysical logs rather than from core examination is that the produced data is continuous, readily interpretable and consistent. In addition the technique is labour saving and cost cutting, especially since data may be extracted from cheaper rock-bitted boreholes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...