Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 4431-4434 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The temporal evolution of the plasma sheath in a small cylindrical bore with an auxiliary electrode is calculated for zero-rise-time voltage pulses. The ion density, flux, dose, ion energy distribu-tion, and electric field are determined by solving Poisson's equation and the equations of ion motion and continuity using finite difference methods. Our results indicate that the implantation time is about halved and slightly more than 50% of the ions possess impact energy higher than the maximum achieved when an auxiliary electrode is absent. The resulting ion flux, ion current, as well as ion energy distribution, are also determined. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 4359-4361 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: High energy implantation of metal ions can be carried out using conventional ion implantation with a mass-selected ion beam in scanned-spot mode by employing a broad-beam approach such as with a vacuum arc ion source, or by utilizing plasma immersion ion implantation with a metal plasma. For many high dose applications, the use of plasma immersion techniques offers a high-rate process, but the formation of a surface film along with the subsurface implanted layer is sometimes a severe or even fatal detriment. We describe here an operating mode of the metal plasma immersion approach by which pure implantation can be obtained. We have demonstrated the technique by carrying out Ti and Ta implantations at energies of about 80 and 120 keV for Ti and Ta, respectively, and doses on the order of 1×1017 ions/cm2. Our experiments show that virtually pure implantation without simultaneous surface deposition can be accomplished. Using proper synchronization of the metal arc and sample voltage pulse, the applied dose that deposits as a film versus the part that is energetically implanted (the deposition-to-implantation ratio) can be precisely controlled.© 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 120-123 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Plasma immersion ion implantation (PIII) is an effective technique for the surface modification of industrial components possessing an irregular shape. We have recently used PIII to treat a real industrial ball bearing to enhance the surface properties of the race surface on which the balls roll. The implantation dose uniformity along the groove is assessed using theoretical simulation and experiments. The two sets of results agree very well, showing larger doses near the center. However, the highest dose is not observed at the bottom or center of the groove, but rather offset toward the side close to the sample platen when the bearing is placed horizontally. The minimum dose is observed near the edge or corner of the groove and our model indicates that it is due to the more glancing ion incidence as a result of the evolution of the ion sheath near the corner. The dose nonuniformity along the groove surface is about 40% based on our experimental data. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 6381-6384 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A three-dimensional numerical model has been developed to simulate the motion of electrons inside the duct of a vacuum arc metal source. It is found that electrons will travel back and forth along the center axis inside the duct tube. This phenomenon of electron oscillation can be explained by the combined effects of the electric and magnetic fields. The electron oscillation will increase the charge state of the positive ions and the ions will gain more energy. Due to the influence of electron oscillation, the plasma throughput of the duct will be different from that of a duct under the influence of only the magnetic field. This finding should be taken into account when designing metal arc sources and optimizing their performance. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 44-49 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A model utilizing cold, unmagnetized, and collisionless fluid ions as well as Boltzmann electrons is used to comprehensively investigate the sheath expansion into a translationally invariant large bore in the presence of an auxiliary electrode during plasma immersion ion implantation (PIII) of a cylindrical bore sample. The governing equation of ion continuity, ion motion, and Poisson's equation are solved by using a numerical finite difference method for different cylindrical bore radii, auxiliary electrode radii, and voltage rise times. The ion density and ion impact energy at the cylindrical inner surface, as well as the ion energy distribution, maximum ion impact energy, and average ion impact energy for the various cases are obtained. Our results show a dramatic improvement in the impact energy when an auxiliary electrode is used and the recommended normalized auxiliary electrode radius is in the range of 0.1–0.3. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 71 (1997), S. 1035-1037 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The temporal evolution of the plasma sheath in a small cylindrical bore in the presence of an auxiliary electrode is determined for different electrode radii. The ion density, velocity, flux, dose, ion energy distribution, and average impact energy are calculated by solving Poisson's Equation and the equations of ion motion and continuity using finite difference methods. The particle-in-cell method is also used to confirm the validity of the data. Our results indicate that more ions will attain high impact energy when the auxiliary electrode radius is increased, but the dose will decrease. Our results suggest that the normalized auxiliary electrode radius should range from 0.10 to 0.30 in order to maximize the dose and produce a larger number of ions with higher impact energy. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...