Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 8614-8620 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A decomposition treatment of density of states in combination with PM3 molecular orbital calculations was used to reveal the fingerprints of electronic structures of two prototypical electroluminescent molecules, tris(8-hydroxy-quinoline)aluminum (Alq3) and N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB). High convenience and accuracy of such a treatment were found for these large organic molecules in the determinations of (1) the distribution of important molecular orbitals such as the highest occupied orbital and the lowest unoccupied orbital; (2) the contribution to valence and conduction bands as well as gap states from constituent atoms, and thus the attribution of ultraviolet photoemission spectrum; (3) the sites and properties of reaction and excitation of a molecule; and (4) the localization property of electronic states. In particular, this study indicates that Alq3 is most possibly attacked by other atoms at the oxygen atoms while the reaction site for NPB is at the nitrogen atom. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 4616-4618 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new nucleation method, which is different from bias-enhanced nucleation, was employed for the preparation of (001)-oriented diamond films on untreated, mirror-polished silicon substrates. The nucleation was realized in an electron cyclotron resonance enhanced microwave plasma at a pressure of about 10−3 Torr which was 4 orders of magnitude lower than that normally used for bias-enhanced nucleation (∼tens Torr). Scanning electron microscopy and Raman spectroscopy were used to investigate the surface morphology and phase purity of the deposited diamond films. The new findings may provide us a route to further understand the nucleation mechanism of diamond films by chemical vapor deposition. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 5649-5651 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Bit-shift performance was investigated at different skew angles and for media with different orientation. Results indicate that the bit-shift value increases as the skew angle increases for both planar orientated media and near-isotropic media. As the skew angle increases, the off-track capability, described by the bit shift at different off-track distances, decreases and the bit-shift profile becomes asymmetric. Comparison of normalized bit-shift values (normalized according to the bit shift at 0° skew angle) shows that the bit shift of the near-isotropic media is not as sensitive to skew angle variation as the media with strong orientation. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 4668-4681 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Intermolecular and intramolecular energy flow and subsequent bond dissociation in collinear collisions I–C≡C–H+Ar and I–C≡C–C≡C–H+Ar have been studied by classical trajectory techniques over the collision energy range of 0 to 10 eV. When the molecule is initially in the ground state, the overall energy transfer in I–C≡C–H+Ar is very small, but in I–C≡C–C≡C–H+Ar it is large. The collisionally perturbed C–H bond stores a large amount of energy from translation for a brief period during the early stage of collision and transfers most of it to the inner region of the molecule, specifically to the low frequency C–I vibration. Thus the high-frequency vibration of the perturbed C–H bond during the collision plays a crucial role in determining the extent of intramolecular energy transfer and, in turn, C–I dissociation. But in nondissociative collisions, there is another series of the C–H vibration at the latter stage of collision, transferring energy back to translation. This study also considers collision-induced intramolecular energy flow in the molecule with an initially excited C–H bond. The relaxation of the low-lying C–H excitation is very slow on a nanosecond time scale. However, when the excitation is high, the vibrational frequency of the C–H bond is significantly weakened, thus becoming comparable to that of the triple bond, in which case the isolating effect of the adjacent C≡C bond is no longer important and intramolecular energy flow becomes efficient.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 727-731 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Bulk-quantity Si nanosphere chains have been fabricated. This is accomplished via the spheroidization of Si nanowires of semi-infinite lengths. The process has been extensively investigated by transmission electron microscopy. The nanosphere chains consisted of equally spaced Si crystalline nanospheres connected by Si-oxide bars. The transition from Si nanowires to Si nanosphere chains was determined by the annealing temperature, ambient pressure, initial Si nanowire diameters, and the oxide state of the outer layers of Si nanowires. The relationships between the geometry (size and spacing) of Si nanospheres, the initial state (diameter and oxide state) of Si nanowires, and the experimental conditions are discussed. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 3354-3360 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The crystal morphologies and phase composition of diamond crystallites during bias enhanced nucleation and initial growth stages in microwave plasma chemical vapor deposition were investigated. Diamond nuclei were first formed in the central regions of substrates and then propagated to the sample edges. During the course of bias nucleation, excessive ion bombardment induced secondary nucleation sites on the already formed nuclei. The secondary nucleation deteriorated the overall alignment of the growing crystals. Hence, the elimination of secondary nucleation and homogeneous nucleation over substrates are fundamental requirements for the deposition of large-area uniformly oriented diamond films. Decreasing reactant pressure was found to be effective for improving plasma homogeneity and consequently nucleation uniformity. The results of bias enhanced nucleation within a pressure range from 8 to 20 Torr showed that the lower pressure of reactants enlarged the area of oriented diamond films. However, the optimum bias and duration of nucleation was found to be specific for each pressure. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 3822-3824 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A B-buried layer with a dose of 1×1014 atoms/cm2 was introduced into p-doped Si at a depth of 2.2 μm to enhance copper diffusion via its inherent gettering effect. Copper was then introduced into silicon either via a low-energy implantation followed by a thermal anneal, or through the thermal drive in of physical vapor deposited (PVD) copper film. Secondary ion mass spectrometry depth profiling of both annealed samples later indicated that while substantial amounts of copper was gettered by the B layer in the former sample, no copper was gettered by the B-buried layer in the latter sample. Further analysis with an x-ray diffraction technique showed that copper silicide, Cu3Si was formed in the latter sample. It is thus surmised that the formation of this silicide layer impeded the diffusion of copper towards the B-buried layer. This work investigates the cause of CuSix formation and the underlying reasons for the lower mobility of Cu in PVD Cu film samples. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 6396-6399 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The chemical reactivity of hydrogen-passivated surface of silicon nanowires (SiNWs) towards the reductive deposition of silver and copper ions from solution is reported. SiNWs synthesized by laser ablation were used in the investigation. The surface properties of SiNWs after the removal of the surface oxide were studied. It is found that the surface silicon of the SiNWs can readily reduce silver (I) and copper (II) ions to metal aggregates of various morphologies on the SiNW surface at room temperature. The reaction products have been characterized with scanning electron microscopy, energy dispersive x-ray spectroscopy, high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. By varying the concentration of Ag(I) ions in the solution, nanostructures of silver with different shapes and sizes can be obtained. This approach for synthesis of metal nanostructures offers a potential method for the preparation of desired metal catalysts. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 7849-7862 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An inductive technique for the measurement of dynamical magnetic processes in thin-film materials is described. The technique is demonstrated using 50 nm films of Permalloy (Ni81Fe19). Data are presented for impulse- and step-response experiments with the applied field pulse oriented in the plane of the film and transverse to the anisotropy axis. Rotation times as short as 200 ps and free oscillations of the magnetization after excitation are clearly observed. The oscillation frequency increases as the dc bias field parallel to the anisotropy axis increases as predicted by classical gyromagnetic theory. The data are fitted to the Landau–Lifshitz equation, and damping parameters are determined as a function of dc bias field. Damping for both impulse and step excitations exhibits a strong dependence on bias field. Damping for step excitations is characterized by an anomalous transient damping which rapidly increases at low dc bias field. Transformation of the data to the frequency domain reveals a higher order precessional mode which is also preferentially excited at low dc bias fields. A possible source for both phenomena is precessional mode saturation for large peak rotations. The technique has the potential for 20 ps resolution, although only 120 ps resolution is demonstrated due to the limited bandwidth of the waveguides used. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 7981-7983 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Silicon nanowires have been synthesized by laser ablation of Si powder targets at 1200 °C. Transmission electron microscopy study showed that most Si nanowires had smooth surfaces and nearly the same diameter of about 16 nm. Beside the most abundant smooth-surface nanowires, four other forms of nanowires, named spring-shaped, fishbone-shaped, frog-egg-shaped, and necklace-shaped nanowires, were observed. The formation of nanowires into different shapes was explained by the two-step growth model based on the vapor–liquid–solid mechanism. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...