Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 4 (1992), S. 1428-1438 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The fourth-order Zakharov equation for interfacial waves of two-layered fluids with finite depths is derived to include quintet interactions. Using this new equation the class I and class II instability and bifurcation of a two-dimensional Stokes interfacial wave into a three-dimensional steady wave is studied. Results are in good agreement with those by numerical calculations from the full unapproximated water wave and with experimental data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 26 (1998), S. 217-247 
    ISSN: 0271-2091
    Keywords: puffs and thermals ; turbulence modelling ; jets and plumes ; environmental fluid mechanics ; vortex flow ; added mass ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The time evolution of a line puff, a turbulent non-buoyant element with significant momentum, is studied using the renormalization group (RNG) k-∊ model. The numerical results show that the puff motion is characterized by a vortex pair flow; the computed flow details and scalar mixing characteristics can be described by self-similar relations beyond a dimensionless time of around 30. The added mass coefficient of the puff motion is found to be approximately unity. The predicted puff flow and mixing rate are substantially similar to those obtained from the standard k-∊ model and are well supported by experimental data. The computed scalar field reveals significant secondary concentration peaks trailing behind in the wake of the puff. The present results suggest that the overall mixing rate of a puff is primarily determined by the large-scale motion and that streamline curvature probably plays a minor role. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...