Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Bending of DNA is a prerequisite of site-specific recombination and gene expression in many regulatory systems involving the assembly of specific nucleoprotein complexes. We have investigated how the uniquely clustered Dam methylase sites, GATCs, in the origin of Escherichia coli replication (oriC ) and their methylation status modulate the geometry of oriC and its interaction with architectural proteins, such as integration host factor (IHF), factor for inversion stimulation (Fis) and DnaA initiator protein. We note that 3 of the 11 GATC sites at oriC are strategically positioned within the IHF protected region. Methylation of the GATCs enhances IHF binding and alters the IHF-induced bend at oriC. GATC motifs also contribute to intrinsic DNA curvature at oriC and the degree of bending is modulated by methylation. The IHF-induced bend at oriC is further modified by Fis protein and IHF affinity for its binding site may be impaired by protein(s) binding to GATCs within the IHF site. Thus, GATC sites at oriC affect the DNA conformation and GATCs, in conjunction with the protein-induced bends, are critical cis-acting elements in specifying proper juxtapositioning of initiation factors in the early steps of DNA replication.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The sequence-specific recognition of double-helical DNA by oligonucleotide-directed triple helix formation is limited primarily to purine tracts. To identify potential lead compounds which are able to extend the sequence repertoire of triple helical complexes, we designed two carbocyclic nucleosides with nucleobases attached via amide bonds. N5-[(1R, 2S, 3R, 4R)-3-hydroxy-4-(hydroxymethyl)-2-methoxycyclopentyl]-2-{[(1H-pyrrol-2-yl)carbonyl]-amino}thiazole-5-carboxamide (L1) and 2-benzamido-N5-[(1R, 2S, 3R, 4R)-3-hydroxy-4-(hydroxymethyl)-2-methoxycyclopentyl]thiazole-5-carboxamide (L2) were synthesized and incorporated into pyrimidine oligonucleotides. The 2-(trimethylsilyl)ethoxymethyl (SEM) protecting group for the 1H-pyrrole NH was found to be compatible with DNA solid-phase synthesis of pyrimidine Oligonucleotides. By quantitative DNase I footprinting analysis, both nonnatural nucleosides L1 and L2 showed preferential binding of pyrimidine over purine bases: L1/2·(C·G) ≈ L1/2·(T · A) 〉 L1/2·(G·C) ≈ L1/2·(A · T). Comparison with the previously reported nonnatural nucleosides with extended aromatic nucleobases 1-(2-deoxy-β-D-ribofuranosyl)-4-(3-benzamidophenyl)-imidazole (D3) and N4-[6-(benzamido)pyridin-2-yl]-2′-deoxycytidine (bzM) suggests that the observed binding selectivity C · G ≈ T · A 〉 G · C ≈ A · T for the nucleoside analogs L1, L2, D3, and bzM is derived from sequence-specific intercalation with preferential stacking of their nucleobases over pyrimidine · purine Watson-Crick base pairs.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...