Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 15 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Expression of genes involved in nikkomycin production in Streptomyces tendae was investigated by two-dimensional gel electrophoresis of cellular proteins. Ten gene products (P1–P10) were identified that were synthesized when nikkomycin was produced; these proteins were not detected in non-producing mutants. N-terminal sequences of six of the 10 proteins were obtained by microsequencing of protein spots excised from preparative two-dimensional gels. Protein P8 was identified as l-histidine amino-transferase (HisAT), which has been previously correlated with nikkomycin production. By using oligo-nucleotide probes deduced from the N-terminal sequences of protein P2 and P6, we isolated an 8 kb Bam HI fragment and a 6.5 kb Pvu II fragment, respectively, from the genome of Streptomyces tendae Tü901. Restriction analyses revealed that both fragments overlapped within a region of 1.5 kb. Mapping of the oligonucleotide probe hybridizing sites indicated that the genes encoding protein P2 and P6 are closely spaced on the 8 kb Bam HI fragment, and the latter is located on the overlapping region. DNA sequence analysis revealed that proteins P1 and P2 are encoded by a single gene, orfP1, that is translated at two initiation codons. The orfP1 gene was interrupted by homologous recombination using the integrating vector pWHM3. The gene-disrupted transformants did not produce nikkomycin, indicating that proteins P1 and P2 are essential for nikkomycin production. The data presented show that reverse genetics was successfully used to isolate genes Involved in nikkomycin production.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key words Nikkomycin ; Streptopmyces ; Aldehyde dehydrogenase ; Hydroxyoxovalerate aldolase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Six genes (nikA, nikB, nikD, nikE, nikF, and nikG) from Streptomyces tendae Tü901 were identified by sequencing the region surrounding the nikC gene, which encodes L-lysine 2-aminotransferase, previously shown to catalyze the initial reaction in the biosynthesis of hydroxypyridylhomothreonine, the peptidyl moiety of the peptidyl nucleoside antibiotic nikkomycin. These genes, together with the nikC gene, span a DNA region of 7.87 kb and are transcribed as a polycistronic mRNA in a growth-phase–dependent manner. The sequences of the deduced proteins NikA and NikB exhibit significant similarity to those of acetaldehyde dehydrogenases and 4-hydroxy-2-oxovalerate aldolases, respectively, which are involved in meta-cleavage degradation of aromatic hydrocarbons. The predicted NikD gene product shows sequence similarity to monomeric sarcosine oxidases, and the deduced NikE protein belongs to the superfamily of adenylate-forming enzymes. The nikF gene and the nikG gene encode a cytochrome P450 monooxygenase and a ferredoxin, respectively. Disruption of any of the genes nikA, nikB, nikD, nikE and nikF by insertion of a kanamycin resistance cassette abolished formation of the biologically active nikkomycins I, J, X, and Z. The nikA, nikB, nikD, and nikE mutants accumulated the nucleoside moieties nikkomycins Cx and Cz. In the nikD and nikE mutants nikkomycin production (nikkomycins I, J, X, Z) could be restored by feeding with picolinic acid and hydroxypyridylhomothreonine, respectively. The nikF mutant exclusively produced novel derivatives, nikkomycins Lx and Lz, which contain pyridylhomothreonine as the peptidyl moiety. Our results indicate that the nikA, nikB, nikD, nikE, nikF, and nikG genes, in addition to nikC, function in the biosynthetic pathway leading to hydroxypyridylhomothreonine; the putative activities of each of their products are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...