Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2327-2337 
    ISSN: 0887-6266
    Keywords: surface tension ; surface energy ; contact angle ; liquid crystalline polymers ; thermotropic polymers ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We have determined the surface energies (γs) of two liquid crystalline polyesters (Vectra™ A-950 [Hoechst Celanese, NJ] and Xydar™ [Amoco, GA]) and one polyesteramide (Vectra™ B-950 [Hoechst Celanese, NJ]) using contact angle techniques at room temperature. These LCPs were dissolved in bis-trifluoromethyl phenol and spin coated upon glass slides to form thin films. The contact angle measurements were carried out employing a Ramé-Hart Contact Angle Goniometer (Ramé-Hart, NJ). Pure water, glycerol, formamide, and diiodomethane were chosen as the testing liquids. Various surface energy calculation models were utilized to analyze the surface energies of these LCP films. Experimental data suggest that surface energy values did match between two-liquid geometric and three-liquid acid-base approaches if the correct combinations of testing liquid were used. However, the three-liquid Lifshitz-van der Waals acid-base method is more suitable for the surface energy calculation of these three LCPs, and provides much more information (e.g., acidity and basity of LCP surfaces). The average surface energies of Vectra™ A-950, Vectra™ B-950, and Xydar™ are 41.0, 41.9, and 42.3 mJ/cm2, respectively. In addition, all these three LCPs should be classed as monopolar Lewis bases because their Lewis acid components, γ+, are negligible. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2327-2337, 1998
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...