Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Due to technical work, the interlibrary loan service wont be available from March 28th until presumably April 3rd.
Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Lung 77 (1931), S. 40-46 
    ISSN: 1432-1750
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-15
    Description: The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders’ decomposition in a generic framework. GCG’s detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders’ framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-06
    Description: Packing rings into a minimum number of rectangles is an optimization problem which appears naturally in the logistics operations of the tube industry. It encompasses two major difficulties, namely the positioning of rings in rectangles and the recursive packing of rings into other rings. This problem is known as the Recursive Circle Packing Problem (RCPP). We present the first dedicated method for solving RCPP that provides strong dual bounds based on an exact Dantzig–Wolfe reformulation of a nonconvex mixed-integer nonlinear programming formulation. The key idea of this reformulation is to break symmetry on each recursion level by enumerating one-level packings, i.e., packings of circles into other circles, and by dynamically generating packings of circles into rectangles. We use column generation techniques to design a “price-and-verify” algorithm that solves this reformulation to global optimality. Extensive computational experiments on a large test set show that our method not only computes tight dual bounds, but often produces primal solutions better than those computed by heuristics from the literature.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-06
    Description: The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders’ decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders’ decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-06
    Description: The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-06
    Description: Schedule disruptions are commonplace in the airline industry with many flight-delaying events occurring each day. Recently there has been a focus on introducing robustness into airline planning stages to reduce the effect of these disruptions. We propose a recoverable robustness technique as an alternative to robust optimisation to reduce the effect of disruptions and the cost of recovery. We formulate the recoverable robust tail assignment problem (RRTAP) as a stochastic program, solved using column generation in the master and subproblems of the Benders' decomposition. We implement a two-phase algorithm for the Benders' decomposition and identify pareto-optimal cuts. The RRTAP includes costs due to flight delays, cancellation, and passenger rerouting, and the recovery stage includes cancellation, delay, and swapping options. To highlight the benefits of simultaneously solving planning and recovery problems in the RRTAP we compare our tail assignment solution against current approaches from the literature. Using airline data we demonstrate that by developing a better tail assignment plan via the RRTAP framework, one can reduce recovery costs in the event of a disruption.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-06
    Description: Airline recovery presents very large and difficult problems requiring high quality solutions within very short time limits. To improve computational performance, the complete airline recovery problem is generally formulated as a series of sequential stages. While the sequential approach greatly simplifies the complete recovery problem, there is no guarantee of global optimality or solution quality. To address this, there has been increasing interest in the development of efficient solution techniques to solve an integrated recovery problem. In this paper, an integrated airline recovery problem is proposed by integrating the schedule, crew and aircraft recovery stages. To achieve short runtimes and high quality solutions, this problem is solved using column-and-row generation. Column-and-row generation achieves an improvement in solution runtimes by reducing the problem size and thereby achieving a faster execution of each LP solve. Further, the results demonstrate that a good upper bound achieved early in the solution process, indicating an improved solution quality with the early termination of the algorithm. This paper also details the integration of the row generation procedure with branch-and-price, which is used to achieve integral optimal solutions. The benefits of applying column-and-row generation to solve the integrated recovery problem are demonstrated with a comparison to a standard column generation technique.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-06
    Description: Schedule disruptions require airlines to intervene through the process of recovery; this involves modifications to the planned schedule, aircraft routings, crew pairings and passenger itineraries. Passenger recovery is generally considered as the final stage in this process, and hence passengers experience unnecessarily large impacts resulting from flight delays and cancellations. Most recovery approaches considering passengers involve a separately defined module within the problem formulation. However, this approach may be overly complex for recovery in many aviation and general transportation applications. This paper presents a unique description of the cancellation variables that models passenger recovery by prescribing the alternative travel arrangements for passengers in the event of flight cancellations. The results will demonstrate that this simple, but effective, passenger recovery approach significantly reduces the operational costs of the airline and increases passenger flow through the network. The integrated airline recovery problem with passenger reallocation is solved using column-and-row generation to achieve high quality solutions in short runtimes. An analysis of the column-and-row generation solution approach is performed, identifying a number of enhancement techniques to further improve the solution runtimes.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-06
    Description: This paper presents a novel application of operations research techniques to the analysis of HIV Env gene sequences, aiming to identify key features that are possible vaccine targets. These targets are identified as being critical to the transmission of HIV by being present in early transmitted (founder) sequences and absent in later chronic sequences. Identifying the key features of Env involves two steps: first, calculating the covariance of amino acid combinations and positions to form a network of related and compensatory mutations; and second, developing an integer program to identify the smallest connected subgraph of the constructed covariance network that exhibits a set covering property. The integer program developed for this analysis, labelled the unrooted set covering connected subgraph problem (USCCSP), integrates a set covering problem and connectivity evaluation, the latter formulated as a network flow problem. The resulting integer program is very large and complex, requiring the use of Benders' decomposition to develop an efficient solution approach. The results will demonstrate the necessity of applying acceleration techniques to the Benders' decomposition solution approach and the effectiveness of these techniques and heuristic approaches for solving the USCCSP.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-06
    Description: Aircraft maintenance planning is of critical importance to the safe and efficient operations of an airline. It is common to solve the aircraft routing and maintenance planning problems many months in advance, with the solution spanning multiple days. An unfortunate consequence of this approach is the possible infeasibility of the maintenance plan due to frequent perturbations occurring in operations. There is an emerging concept that focuses on the generation of aircraft routes for a single day to ensure maintenance coverage that night, alleviating the effects of schedule perturbations from preceding days. In this paper, we present a novel approach to ensure that a sufficient number of aircraft routes are provided each day so maintenance critical aircraft receive maintenance that night. By penalising the under supply of routes terminating at maintenance stations from each overnight airport, we construct a single day routing to provide the best possible maintenance plan. This single day aircraft maintenance routing problem (SDAMRP) is further protected from disruptions by applying the recoverable robustness framework. To efficiently solve the recoverable robust SDAMRP acceleration techniques, such as identifying Pareto-optimal cuts and a trust region approach, have been applied. The SDAMRP is evaluated against a set of flight schedules and the results demonstrate a significantly improved aircraft maintenance plan. Further, the results demonstrate the magnitude of recoverability improvement that is achieved by employing recoverable robustness to the SDAMRP.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...