Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments were performed on the Nova laser [E. M. Campbell et al., Rev. Sci. Instrum. 57, 2101 (1986)], using indirectly driven capsules mounted in cylindrical gold hohlraums, to measure the Rayleigh–Taylor growth at the ablation front by time-resolved radiography. Modulations were preformed on the surface of Ge-doped plastic capsules. With initial modulation amplitude of 2–2.5 μm, growth factors of about six in optical depth were seen, in agreement with simulations using the radiation hydrocode FCI2 [G. Schurtz, La fusion thermonucleaire inertielle par laser, edited by R. Dautray et al. (Eyrolles, Paris, 1994), Vol. 2]. With initial modulation amplitude of 0.5 μm and a longer drive, growth factors of about 100–150 in optical depth were seen. Comparable planar experiments showed growth factors of about 40 in optical depth. Analytical models predict the observed growth factors. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The performance of a targets designed for the National Ignition Facility (NIF) are simulated in three dimensions using the HYDRA multiphysics radiation hydrodynamics code. [M. Marinak et al., Phys. Plasmas 5, 1125 (1998)] In simulations of a cylindrical NIF hohlraum that include an imploding capsule, all relevant hohlraum features and the detailed laser illumination pattern, the motion of the wall material inside the hohlraum shows a high degree of axisymmetry. Laser light is able to propagate through the entrance hole for the required duration of the pulse. Gross hohlraum energetics mirror the results from an axisymmetric simulation. A NIF capsule simulation resolved the full spectrum of the most dangerous modes that grow from surface roughness. Hydrodynamic instabilities evolve into the weakly nonlinear regime. There is no evidence of anomalous low mode growth driven by nonlinear mode coupling. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Three similar cryogenic ignition capsule designs for the National Ignition Facility [J. Lindl, Phys. Plasmas 2, 3933 (1995)] are analyzed to determine surface roughness specifications required to mitigate the growth of hydrodynamic instabilities. These capsule utilize brominated plastic, polyimid and copper-doped beryllium ablator materials respectively. Direct three-dimensional numerical simulations with the HYDRA radiation hydrodynamic code [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)] examine the growth of multimode perturbations seeded by roughness on the outer ablator and inner ice surfaces. The simulations, which showed weakly nonlinear behavior for optimized surfaces, were carried through ignition and burn. A three-dimensional multimode perturbation achieves somewhat larger amplitudes in the nonlinear regime than a corresponding two-dimensional simulation of the same rms amplitude. The beryllium and polyimid capsules exhibit enhanced tolerance of roughness on both the ice and ablator surfaces. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Capsule implosion experiments carried out on the Nova laser [E. M. Campbell et al., Rev. Sci. Instrum. 57, 2101 (1986)] are simulated with the three-dimensional HYDRA radiation hydrodynamics code [NTIS Document No. DE-96004569 (M. M. Marinak et al. in UCRL-LR-105821-95-3)]. Simulations of ordered, near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, in which case they cause even more damage. A simulation of a capsule with a multimode perturbation of moderate amplitude shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry is found to be important, bringing the simulated neutron yields into closer agreement with the experimental values. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 3708-3713 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this article we describe the design and simulated performance characteristics of an indirectly-driven inertial confinement fusion capsule which utilizes only 900 kJ of laser energy and 250 TW of laser power from the National Ignition Facility (NIF) [Paisner et al., Laser Focus World 30, 75 (1994)]. This intentional reduction in laser performance from the nominal NIF specifications of 1.8 MJ and 500 TW results in lowering the hohlraum x-ray drive temperature from 300 eV to 250 eV. These energy and radiation temperature reductions are believed to define a "lower bound" on the successful implosion of an ignition capsule. This reduced scale capsule has a beryllium ablator containing a radially varying copper dopant, and a cryogenic solid deuterium–tritium fuel layer surrounding a cavity filled with equilibrium vapor pressure gaseous deuterium and tritium. Two-dimensional simulations predict ignition and propagated burn from this capsule when either Rayleigh–Taylor instability or time-dependent drive asymmetry effects are included. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Several inertial confinement fusion (ICF) capsule designs have been proposed as possible candidates for achieving ignition by indirect drive on the National Ignition Facility (NIF) laser [Paisner et al., Laser Focus World 30, 75 (1994)]. This article reviews these designs, their predicted performance using one-, two-, and three-dimensional numerical simulations, and their fabricability. Recent design work at a peak x-ray drive temperature of 250 eV with either 900 or 1300 kJ total laser energy confirms earlier capsule performance estimates [Lindl, Phys. Plasmas 2, 3933 (1995)] that were based on hydrodynamic stability arguments. These simulations at 250 eV and others at the nominal 300 eV drive show that capsules having either copper doped beryllium (Be+Cu) or polyimide (C22H10N2O4) ablators have favorable implosion stability and material fabrication properties. Prototypes of capsules using these ablator materials are being constructed using several techniques: brazing together machined hemishells (Be+Cu), sputter deposition (Be+Cu), and monomer deposition followed by thermal processing (polyimide). © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 241-255 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Rayleigh–Taylor (RT) experiments have been conducted with planar CH(Br) foils accelerated by x-ray ablation from a shaped, low adiabat drive. The surface perturbations investigated consisted of single-mode, two-mode, and eight-mode sinusoids. The perturbation evolution begins during the shock transit phase, when perturbations show gradual growth due to Richtmyer–Meshkov-like dynamics. After shock breakout, the compressed foils accelerate and perturbation growth continues due to the Rayleigh–Taylor instability. Detailed comparisons with simulations indicate that in the linear Rayleigh–Taylor regime, the single-mode perturbations grow exponentially in time. In the nonlinear regime, the growth slows and the perturbation shape changes from sinusoidal to "bubble and spike'' with the appearance of higher Fourier harmonics. In the multimode perturbations, the individual modes grow independently in the linear regime, but become coupled in the nonlinear regime. In addition to the higher harmonics of the individual modes, coupling leads to the appearance of ki±kj "beat'' modes. This results in a redistribution of the perturbation into a broader Fourier spectrum causing a change of shape: bubbles become broader and flatter and spikes narrower, in agreement with simulations and multimode theory. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 3567-3572 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The growth due to the Rayleigh–Taylor (RT) instability of single-wavelength surface perturbations on planar foils of copper-doped beryllium [BeCu] was measured. These foils were accelerated by x-ray ablation, with a shaped drive designed to produce ∼1.5 ns of uniform acceleration. A range of wavelengths (λ=30–70 μm) was used with initial amplitudes η0/λ=0.03–0.04. Tabulated opacities from detailed atomic physics models, HOPE [J. Quant. Spectros. Radiat. Transf. 43, 381 (1990)], OPAL [Astrophys. J. 397, 717 (1992)] and super transition array (STA) [Phys. Rev. A 40, 3183 (1989)] were employed in simulations. Other ingredients which can affect modeling, such as changes in the equation of state and the radiation drive spectrum, were also examined. This calculational model agrees with the Nova single wavelength RT perturbation growth data for the BeCu. No adjustments to the modelling parameters were necessary. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 61 (1990), S. 508-510 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A tandem microwave-driven plasma source for the production of H− ions has been developed and tested. The source has a microwave-driven primary chamber with a thermionic cathode-driven secondary plasma. This source was used to experimentally verify certain aspects of a theoretical model of H− production by Hiskes. A general agreement with the theory was found for the dependence of produced H− current with the plasma electron temperature. In addition, it appears that a surface production mechanism on the BaO-impregnated cathode enhanced the H− current production. Experimental results are given and compared to present theoretical understanding.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...