Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 60 (1989), S. 3739-3743 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: High-speed lithium pellets have been injected into Alcator C tokamak plasmas in order to measure the internal magnetic field, and thus current density profiles. In the pellet ablation cloud, intense visible line radiation from the Li+ ion (λ≈5485 A(ring), 1s2s 3S−1s2p 3P) is polarized due to the Zeeman effect, and measurement of the polarization angle yields the direction of the total local magnetic field. A "snap shot'' of the q profile is obtained as the pellet penetrates from the edge into the center of the discharge, in a time of about 300 μs. The spatial resolution of the measurement is about 1 cm. At a toroidal field of BT=10 T, the emission in the unshifted π component of the Zeeman triplet is more than 80% polarized, and q profiles have been obtained. The pellets are perturbative (〈Δne〉/〈ne〉≈1), but the total pellet penetration time is at least a factor of 1000 smaller than the classical skin time. It can thus be anticipated that the current density profile should not be perturbed significantly during the time of the measurement. With some relatively straightforward modifications and refinements, precision approaching 10% for the measurement of q profiles should be achievable. The technique appears viable, using Li, as long as the toroidal field is (approximately-greater-than)4 T.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1568-1570 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: High densities with sharp, fast rising profiles are expected during pellet injection in Alcator C-MOD. Consideration of interferometer systems other than far infrared will be needed to avoid refractive effects and make profile measurements during pellet injection possible. CO2 wavelengths are proving to be the most interesting from the standpoint of density measurements, with the necessary vibration subtraction provided by a coaxial He:Ne system. We will describe the two-color interferometer as it is presently designed and present results from simulations made of the system to determine noise levels, minimum measurable density, and optimal number and location of chords. Ray tracing results both with and without pellet injection will be compared. Possible fringe counting schemes will also be discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1591-1591 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The preliminary design of a multichord imaging interferometer system used to measure the density profiles in the scrape-off layer of the Alcator C-Mod tokamak is presented. The system is envisioned to be a two-color vibration compensated double-pass interferometer based on a CO2 laser with λ=10.6 μm; the second color will either use He–Ne emission at 632.8 nm or 3.39 μm, depending on how serious the vibrations are expected to be. A toroidal view of the plasma near the vertical midplane is considered. We present systematic studies of the requirements on fringe resolution and edge density range, from which reasonably accurate profiles can be inferred. Requirements on the spatial resolution, number of detectors, and the possibility of obtaining 2-D images of the edge will be addressed. Longer wavelength alternatives using a FIR laser will also be studied; in this case the main concern is beam refraction caused by the density gradients in the edge region of interest. This work was supported by U. S. DOE Contract No. DE-AC02-78ET51013.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Central toroidal rotation and impurity transport coefficients have been determined in Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] Ohmic high confinement mode (H-mode) plasmas from observations of x-ray emission following impurity injection. Rotation velocities up to 3×104 m/sec in the co-current direction have been observed in the center of the best Ohmic H-mode plasmas. Purely ohmic H-mode plasmas display many characteristics similar to ion cyclotron range of frequencies (ICRF) heated H-mode plasmas, including the scaling of the rotation velocity with plasma parameters and the formation of edge pedestals in the electron density and temperature profiles. Very long impurity confinement times (∼1 sec) are seen in edge localized mode-free (ELM-free) Ohmic H-modes and the inward impurity convection velocity profile has been determined to be close to the calculated neoclassical profile. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Neutral particle densities and energy losses have been measured in the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994)]. Their effect on the formation and evolution of the edge barrier which accompanies the enhanced confinement regime are discussed. The neutrals can enter the edge dynamics through the particle, momentum, and energy balance. Neutral densities of up to 5×1016 m−3 have been measured in the edge barrier region. Neutrals enter the local dynamics around most of the periphery, not just at the X-point. High resolution measurements of the ionization profile have been obtained for the region near the separatrix. The profile shifts inside the separatrix as the plasma is making a transition from low-to high-mode confinement (H-mode) regimes, partly accounting for the dramatic rise in edge density. The measured neutral density is large enough to affect the bulk ion momentum by charge exchange, and thereby introduces a negative radial electric field at the edge. At the same time, significant edge heat flux, carried by the neutrals, contributes to the measured power loss. At very high edge densities, this loss mechanism could contribute to quenching H-modes. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Trace non-recycling impurities have been injected into Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] plasmas in order to determine impurity transport coefficients. Subsequent impurity emission has been observed with spatially scanning x-ray and Vacuum Ultra-Violet (VUV) spectrometer systems. Measured time-resolved brightness profiles of helium- and lithium-like transitions have been compared with those calculated from a transport code which includes impurity diffusion and convection in conjunction with an atomic physics package for individual line emission. During Low-Confinement-Mode (L-mode) plasmas, the transport can be characterized by pure diffusion, with coefficients ∼5000 cm2/s, reflecting the ∼20 ms decay in the x-ray and VUV line brightnesses. During High-Confinement-Modes (H-modes), the impurity confinement times are much longer, and the modelling requires that there be a strong inward convection (of order 1000 cm/s) near the plasma edge, with greatly reduced diffusion (of order 100 cm2/s), also in the region of the edge transport barrier. These edge values of the transport coefficients during H-mode are qualitatively similar to the neo-classical values. Nitrogen has also been injected, and after the H- to L-mode transition, the inner shell satellite lines of lithium-like nitrogen dominate in intensity the resonance line of helium-like N5+ in a thin shell near the plasma edge. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Wall conditioning in the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] by injection of lithium pellets into the plasma has resulted in large improvements in deuterium–tritium fusion power production (up to 10.7 MW), the Lawson triple product (up to 1021 m−3 s keV), and energy confinement time (up to 330 ms). The maximum plasma current for access to high-performance supershots has been increased from 1.9 to 2.7 MA, leading to stable operation at plasma stored energy values greater than 5 MJ. The amount of lithium on the limiter and the effectiveness of its action are maximized through (1) distributing the Li over the limiter surface by injection of four Li pellets into Ohmic plasmas of increasing major and minor radius, and (2) injection of four Li pellets into the Ohmic phase of supershot discharges before neutral-beam heating is begun. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The regime of high particle and energy confinement known as the H mode [Phys. Rev. Lett. 49, 1408 (1982)] has been extended to a unique range of operation for divertor tokamaks up to toroidal fields of nearly 8 T, line-averaged electron densities of 3×1020 m−3, and surface power densities of nearly 0.6 MW/m2 in the compact high-field tokamak Alcator C Mod [Phys. Plasmas 1, 1511 (1994)]. H modes are achieved in Alcator C Mod with Ion Cyclotron Resonant Frequency (ICRF) heating and with Ohmic heating alone without boronization of the all molybdenum tiled first wall. Large increases in charge exchange flux are observed during the H mode over the entire range of energies from 2 to 10 keV. There appears to be an upper limit to the midplane neutral pressure, of about 0.08 Pa above which no H modes have been observed. The plasmas with the best energy confinement have the lowest midplane neutral pressures, below 0.01 Pa. There is an edge electron temperature threshold such that Te≥280 eV ±40 eV for sustaining the H mode, which is equal at L–H and H–L transitions. The hysteresis in the threshold power between L–H and H–L transitions is less than 25% on average. Both core and edge particle confinement improve by a factor of 2–4 from L mode to H mode. Energy confinement also improves by up to a factor of 2 over L mode. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] a substantial improvement in fusion performance has been realized by combining the enhanced confinement due to tritium fueling with the enhanced confinement due to extensive conditioning of the limiter with lithium. This combination has resulted in not only significantly higher global energy confinement times than have previously been obtained in high current supershots, but also in the highest central ratio of thermonuclear fusion output power to input power observed to date. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The formation of internal transport barriers (ITBs) has been observed in the core region of Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] under a variety of conditions. The improvement in core confinement following pellet injection (pellet enhanced performance or PEP mode) has been well documented on Alcator C-Mod in the past. Recently three new ITB phenomena have been observed which require no externally applied particle or momentum input. Short lived ITBs form spontaneously following the high confinement to low confinement mode transition and are characterized by a large increase in the global neutron production (enhanced neutron or EN modes). Experiments with ion cyclotron range of frequencies power injection to the plasma off-axis on the high field side results in the central density rising abruptly and becoming peaked. The ITB formed at this time lasts for ten energy confinement times. The central toroidal rotation velocity decreases and changes sign as the density rises. Similar spontaneous ITBs have been observed in ohmically heated H-mode plasmas. All of these ITB events have strongly peaked density profiles with a minimum in the density scale length occurring near r/a=0.5 and have improved confinement parameters in the core region of the plasma. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...