Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: Key wordsSchizosaccharomyces pombe ; Checkpoint control ; γ-Irradiation ; DNA replication
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mutation of the essential Schizosaccharomyces pombe rad4/cut5 gene causes sensitivity to UV and ionising radiation at the permissive temperature whilst at the restrictive temperature cells fail to undergo DNA replication but still attempt mitosis owing to a defective S-phase checkpoint response. Many mutations in genes encoding DNA replication proteins also abolish checkpoint responses, possibly because the replication machinery is a pre-requisite for the generation of the signal. We demonstrate here that rad4/cut5 cells fail to arrest cell division when treated with the replication inhibitor hydroxyurea at the semi-permissive temperature 32° C, but retain essentially normal replicative capacity. This demonstrates that the replication and checkpoint function of the rad4/cut5 gene product can be separated and that the Rad4 protein differs from other replication proteins in being directly involved in generating the S-phase checkpoint signal. Furthermore, we have investigated the checkpoint response or rad4/cut5-deficient cells to γ-irradiation and UV-mimetic drugs. We find that, at the restrictive temperature, the rad4 − /cut5 − cells fail to delay mitosis in response to γ-irradiation whilst retaining a normal checkpoint response to the UV-mimetic drug 4-nitroquinoline-1-oxide. The lack of the γ-irradiation checkpoint is reminiscent of the deficiency associated with mutation of the human ATM locus, the causative deficiency of the heritable disorder ataxia telangiectasia. The implications of our results for the organisation of distinct checkpoint-response pathways in both fission yeast and mammalian cells are discussed. Moreover the data are consistent with a model in which the generation of the S-Phase checkpoint signal is DNA polymerase ɛ dependent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 253 (1996), S. 128-137 
    ISSN: 1617-4623
    Keywords: Key words Fission yeast ; 5-Azacytidine ; DNA methylation ; Checkpoint controls
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A fission yeast gene which shares considerable sequence homology with cytosine-specific DNA methyltransferases has recently been identified. This discovery has led us to investigate the effects of the treatment of fission yeast with the nucleoside analogue 5-azacytidine (5-azaC). 5-AzaC is known to inhibit cytosine methylation as a result of the formation of stable covalent complexes between DNA (cytosine-5) methyltransferases (C5 Mtases) and 5-azaC containing DNA. Here we demonstrate that 5-azaC treatment of Schizosaccharomyces pombe leads to reversible cell cycle arrest at the G2/M transition. This reversible arrest is dependent on the cell cycle checkpoint mechanisms which act to prevent the onset of mitosis in the presence of either damaged or unreplicated DNA. Treatment of S. pombe cell division cycle and checkpoint mutants indicates that 5-azaC causes DNA damage and is likely to inhibit a late stage in DNA replication. The data show that viability in the presence of the drug requires both the DNA damage and the replication checkpoint pathways to be functional. 5-AzaC also elicits a transcriptional response which is associated with DNA damage and the inhibition of DNA replication in fission yeast, and this response is absent in cells carrying G2 checkpoint mutations. The implications of these observations for both the use of 5-azaC in cancer chemotherapy and the existence of cytosine methylation in fission yeast are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 251 (1996), S. 483-492 
    ISSN: 1617-4623
    Keywords: 5-Azacytidine ; Fission yeast ; DNA repair
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have recently demonstrated thatSchizosaccharomyces pombe cells treated with the nucleoside analogue 5-azacytidine (5-azaC) require previously characterised G2 checkpoint mechanisms for survival. Here we present a survey of known DNA repair mutations which defines those genes required for survival in the presence of 5-azaC. Using a combination of single-mutant and epistasis analyses we find that the excision, mismatch and recombinational repair pathways are all required in some degree for the repair of 5-azaC-mediated DNA damage. There are distinct differences in the epistatic interactions of several of the repair mutations with respect to 5-azaC-mediated DNA damage relative to UV-mediated DNA damage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...