Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 57 (1986), S. 2227-2229 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We report on a fast framing camera designed to image imploding foils driven by inductive storage drivers. The camera has several front ends which are disposable, they allow for imaging in either the visible, UV, or x-ray regions; it also has very large dynamic range which allows it to record sequences of events where the brightness changes by many orders of magnitude.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In the concept of the dynamic hohlraum an imploding Z pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision, the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal, the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 MA, 100 ns) to create a dynamic hohlraum with temperature linearly ramping from 100 to 180 eV over 5 ns. On this shot zp214 a nested tungsten wire array of 4 and 2 cm diam with masses of 2 and 1 mg imploded onto a 2.5 mg plastic annulus at 5 mm diam. The current return can on this shot was slotted. It is likely the radiation temperature may be increased to over 200 eV by stabilizing the pinch with a solid current return can. A current return can with nine slots imprints nine filaments onto the imploding pinch. This degrades the optical trapping and the quality of the liner collision. A 1.6 mm diam capsule situated inside this dynamic hohlraum of zp214 would see 15 kJ of radiation impinging on its surface before the pinch itself collapses to a 1.6 mm diam. Dynamic hohlraum shots including pellets were scheduled to take place on Z in September of 1998. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Aluminum wire array, Z-pinch experiments have been performed on an 8 MA generator using arrays consisting of 24, 30, and 42 wires. These experiments were designed to scan through a region of (array mass, implosion velocity) space in which greater than 30% conversion of the implosion kinetic energy into K-shell x rays was predicted to occur [Thornhill et al., Phys. Plasmas 1, 321 (1994)]. Array masses between 120 and 2050 μg/cm were used in these experiments. An analysis of the x-ray data taken using 24 wire arrays, shows a one-to-one correspondence between the observed kilo-electron-volt yields (5–64 kJ) and the fraction of initial array mass (0.3%–60%) that is radiating from the K shell. The 30 and 42 wire experiments demonstrated that tighter pinches with increased radiated powers were achieved with these larger wire number, improved symmetry arrays. In addition, increases in the implosion mass and array diameter in the 30 and 42 wire number cases resulted in increases in the radiated yield over the corresponding 24 wire shots, up to 88 kJ, which can be interpreted as due to improved coupling and thermalization of the kinetic energy. Moreover, spectroscopic analyses of the 30 and 42 wire experiments have shown that the increased wire numbers also resulted in K-shell radiating mass fractions of greater than 50%. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Here Z, a 60 TW/5 MJ electrical accelerator located at Sandia National Laboratories, has been used to implode tungsten wire-array Z pinches. These arrays consisted of large numbers of tungsten wires (120–300) with wire diameters of 7.5 to 15 μm placed in a symmetric cylindrical array. The experiments used array diameters ranging from 1.75 to 4 cm and lengths from 1 to 2 cm. A 2 cm long, 4 cm diam tungsten array consisting of 240, 7.5 μm diam wires (4.1 mg mass) achieved an x-ray power of ∼200 TW and an x-ray energy of nearly 2 MJ. Spectral data suggest an optically thick, Planckian-like radiator below 1000 eV. One surprising experimental result was the observation that the total radiated x-ray energies and x-ray powers were nearly independent of pinch length. These data are compared with two-dimensional radiation magnetohydrodynamic code calculations. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Saturn pulsed power accelerator [R. B. Spielman et al., in Proceedings of the 2nd International Conference on Dense Z-pinches, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] at Sandia National Laboratories (SNL) and the Nova laser [J. T. Hunt and D. R. Speck, Opt. Eng. 28, 461 (1989)] at Lawrence Livermore National Laboratory (LLNL) have been used to explore techniques for studying the behavior of ablator material in x-ray radiation environments comparable in magnitude, spectrum, and duration to those that would be experienced in National Ignition Facility (NIF) hohlraums [J. D. Lindl, Phys. Plasmas 2, 3933 (1995)]. The large x-ray outputs available from the Saturn pulsed-power-driven z pinch have enabled us to drive hohlraums of full NIF ignition scale size at radiation temperatures and time scales comparable to those required for the low-power foot pulse of an ignition capsule. The high-intensity drives available in the Nova laser have allowed us to study capsule ablator physics in smaller-scale hohlraums at radiation temperatures and time scales relevant to the peak power pulse for an ignition capsule. Taken together, these experiments have pointed the way to possible techniques for testing radiation-hydrodynamics code predictions of radiation flow, opacity, equation of state, and ablator shock velocity over the range of radiation environments that will be encountered in a NIF hohlraum. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this article we investigate the partial closure of diagnostic holes in Z-pinch driven hohlraums. These hohlraums differ from current laser-driven hohlraums in a number of ways such as their larger size, greater x-ray drive energy, and lower temperature. Although the diameter of the diagnostic holes on these Z-pinch driven hohlraums can be much greater than their laser-driven counterparts, 4 mm in diameter or larger, radiation impinges on the wall material surrounding the hole for the duration of the Z pinch, nearly 100 ns. This incident radiation causes plasma to ablate from the hohlraum walls surrounding the diagnostic hole and partially obscure this diagnostic hole. This partial obscuration reduces the effective area over which diagnostics view the hohlraum's radiation. This reduction in area can lead to an underestimation of the wall temperature when nonimaging diagnostics such as x-ray diodes and bolometers are used to determine power and later to infer a wall temperature. In this article we describe the techniques used to characterize the hole-closure in these hohlraums and present the experimental measurements of this process. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Z-pinch-driven hohlraum (ZPDH) [J. H. Hammer et al., Phys. Plasmas 6, 2129 (1999)] is a promising approach to high yield inertial confinement fusion currently being characterized in experiments on the Sandia Z accelerator [M. E. Cuneo et al., Phys. Plasmas 8, 2257 (2001)]. Simulations show that capsule radiation symmetry, a critical issue in ZPDH design, is governed primarily by hohlraum geometry, dual-pinch power balance, and pinch timing. In initial symmetry studies on Z without the benefit of a laser backlighter, highly-asymmetric pole-hot and equator-hot single Z-pinch hohlraum geometries were diagnosed using solid low density foam burnthrough spheres. These experiments demonstrated effective geometric control and prediction of polar flux symmetry at the level where details of the Z-pinch implosion and other higher order effects are not critical. Radiation flux symmetry achieved in Z double-pinch hohlraum configurations exceeds the measurement sensitivity of this self-backlit foam ball symmetry diagnostic. To diagnose radiation symmetry at the 2%–5% level attainable with present ZPDH designs, high-energy x rays produced by the recently-completed Z-Beamlet laser backlighter are being used for point-projection imaging of thin-wall implosion and symmetry capsules. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We have developed and fielded an axial diagnostic package for the 20 MA, 100 ns, z-pinch driver Z. The package is used to diagnose dynamic hohlraum experiments which require an axial line of sight. The heart of the package is a reentrant cone originally used to diagnose ion-beam-driven hohlraums on PBFA-II. It has one diagnostic line of sight at 0°, two at 4°, four at 6°, and four at 9°. In addition it has a number of viewing, alignment, and vacuum feedthrough ports. The front of the package sits approximately 1.5 m from the pinch. This allows much closer proximity to the pinch, with inherently better resolution and signal, than is presently possible in viewing the pinch from the side. Debris that is preferentially directed along the axis is mitigated by two apertures for each line of sight, and by fast valves and imaging pinholes or cross slits for each diagnostic. In the initial run with this package we fielded a time-resolved pinhole camera, a five-channel pinhole-apertured x-ray diode array, a bolometer, a spatially resolved time-integrated crystal spectrometer, and a spatially and temporally resolved crystal spectrometer. We will present data obtained from these diagnostics in the dynamic hohlraum research conducted on Z. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 468-470 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We have developed a comprehensive diagnostic package for observing z-pinch radiation along the pinch axis on the Z accelerator. The instrumentation, fielded on the axial package, are x-ray diagnostics requiring direct lines of sight to the target. The diagnostics require vacuum access to the center of the accelerator. The environment is a hostile one, where we must deal with an intense, energetic photon flux (〉100 keV) debris (e.g., bullets or shrapnel), and mechanical shock in order for the diagnostics to survive. In addition, practical constraints require the package be refurbished and utilized on a once a day shot schedule. In spite of this harsh environment, we have successfully fielded the diagnostic package with a high survivability of the data and the instruments. In this article, we describe the environment and issues related to the reentrant diagnostic package's implementation and maintenance. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A combination of a 400 ns, 300 mJ, 640 nm dye laser, and an optical streak camera have been used to demonstrate that time-resolved shadowgrams can be made of the implosion phase of tungsten wire arrays. Initial experiments have shown that mirror lifetime and spatial resolution are issues for this diagnostic technique. Nonetheless, these experiments have provided new information on wire array dynamics; specifically, they show that even with a 0.46 mm wire spacing, the high density regions formed by the wires, are separate until 30 ns into the main drive current. Peak currents of 6.6 MA were obtained 40 ns after the start of the current, while peak radiated powers of 85 TW were measured at 50 ns. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...