ISSN:
0945-3245

Keywords:
AMS(MOS): 65N05
;
CR: G1.8

Source:
Springer Online Journal Archives 1860-2000

Topics:
Mathematics

Notes:
Summary The Dirichlet problem foru=(u 1,...,u n ) $$\Delta u + f(x,u) = 0in\Omega ,u = 0on\Gamma = \partial \Omega $$ wheref=(f 1,...,f n ), is discretized in the usual way (h mesh size): $$\Delta ^h u + f(x,u) = 0in\Omega _h ,u = 0on\Gamma _h $$ We consider variousmonotone, convergent iterative schemes. Among others, they can be used, together with estimation theorems for upper and lower solutions, to show uniqueness for solutions of (2). Numerical results are given for the system $$\Delta u + u(a - bu - c\upsilon ) = 0,\Delta \upsilon + \upsilon (d - eu - f\upsilon ) = 0$$ from mathematical biology (two competing species). It is shown that there is a unique positive solution for certain values of the positive parametersa,..., f. This result is crucial for the asymptotic behavior of solutions of the corresponding parabolic system ast→∞.

Type of Medium:
Electronic Resource

Permalink