Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 24 (1985), S. 1080-1087 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1528
    Keywords: Key words Polyethylene ; Cole-Cole distribution ; Metallocene ; Ziegler ; Viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The empirical Cole-Cole distribution is an analytical three parameter model of the relaxation spectra that provides accurate fits to experimental dynamic viscosity data for many systems of commercial linear backbone flexible polymers. We demonstrate that for disparate systems of polyethylenes, the three Cole-Cole model parameters have simple power law relationships to moments of the molecular weight distribution enabling direct molecular interpretation of the mechanical relaxation spectrum. A simple relationship between the Cole-Cole distribution and the Cross model for the non-linear flow curve can be deduced utilizing the empirical Cox-Merz rule. Accurately representing the linear viscoelastic material functions with empirical analytical relaxation spectra containing relatively few fitting parameters that can be readily interpreted is a major advance in polymer characterization. The three Cole-Cole parameters effectively replace single point material characterizations such as melt flow index. Development of higher resolution polymer characterization methods is imperative with the advent of metallocene catalyst technology, which enables the molecular weight and backbone architecture to be carefully controlled.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 265-280 
    ISSN: 0887-6266
    Keywords: entangled polymer solution ; double-step strain rate ; flow birefringence ; tube model ; segmental stretch ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Experiments measuring the orientation angle and birefringence in startup and double-step strain rate flows were conducted on a 3.0 wt % 8.42 × 106 molecular weight polystyrene solution in a Couette flow cell. A phase-modulated flow birefringence apparatus was used to noninvasively probe the sample. Upon startup from rest, the orientation angle undershoots its final steady-state value, as seen by earlier investigators. When the shear rate undergoes a step increase from one nonzero value to another, the amplitude of this undershoot is decreased. However, a more significant effect is a shorter time scale overshoot in the orientation angle that is highly counterintuitive in the sense that an increase of shear rate initially produces a rotation of chain segments away from the flow direction. Similarly, a step decrease in shear rate yields an initial transient rotation toward the flow direction. In both cases, the height of the peaks depends upon the magnitude of the shear rate jump, and the width of the peaks is a function of the final shear rate. The longer time transients in the startup and step increase experiments reflect an apparent change in the relaxation time for segment orientation, which we tentatively attribute to a combination of tube dilation and convective constraint release. The shorter time scale over- and undershoots in the orientation angle appear to be qualitatively explained by considering the differences in extension or contraction of segments along the polymer chain. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 265-280, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...