Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 61 (1999), S. 113-140 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract Synthetic barriers such as gloves, condoms and masks are widely used in efforts to prevent disease transmission. Due to manufacturing defects, tears arising during use, or material porosity, there is inevitably a risk associated with use of these barriers. An understanding of virus transport through the relevant passageways would be valuable in quantifying the risk. However, experimental investigations involving such passageways are difficult to perform, owing to the small dimensions involved. This paper presents a mathematical model for analyzing and predicting virus transport through barriers. The model incorporates a mathematical description of the mechanisms of virus transport, which include carrier-fluid flow, Brownian motion, and attraction or repulsion via virus-barrier interaction forces. The critical element of the model is the empirically determined rate constant characterizing the interaction force between the virus and the barrier. Once the model has been calibrated through specification of the rate constant, it can predict virus concentration under a wide variety of conditions. The experiments used to calibrate the model are described, and the rate constants are given for four bacterial viruses interacting with a latex membrane in saline. Rate constants were also determined for different carrier-fluid salinities, and the salt concentration was found to have a pronounced effect. Validation experiments employing laser-drilled pores in condoms were also performed to test the calibrated model. Model predictions of amount of transmitted virus through the drilled holes agreed well with measured values. Calculations using determined rate constants show that the model can help identify situations where barrier-integrity tests could significantly underestimate the risk associated with barrier use.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 35 (1989), S. 592-602 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A model is introduced for analyzing diameter variations occurring in glass fibers drawn from preforms. The heat transfer is shown to be radiation-dominated, and approximate expressions for radiative exchange are developed. The expressions are used in the one-dimensional governing equations for extensional flows to derive a set of linearized disturbance equation as an eigenvalue problem. The sensitivity to an oscillatory take-up rate is also studied as a boundary-value problem. Calculated amplitudes of final diameter perturbations are found to agree well with experimental values.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...