Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Chemical Physics Letters 38 (1976), S. 498-499 
    ISSN: 0009-2614
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Freezing resistance mechanisms were studied in five endemic Hawaiian species growing at high elevations on Haleakala volcano, Hawaii, where nocturnal subzero (°C) air temperatures frequently occur. Extracellular freezing occurred at around -5°C in leaves of Argyroxiphium sandwicense and Sophora chrysophylla, but these leaves can tolerate extracellular ice accumulation to -15°C and -12°C, respectively. Mucilage, which apparently acted as an ice nucleator, comprised 9 to 11% of the dry weight of leaf tissue in these two species. Leaves of Vaccinium reticulatum and Styphelia tameiameiae were also found to tolerate substantial extracellular freezing. Dubautia menziesii, on the other hand, exhibited the characteristics of permanent supercooling; a very rapid decline in liquid water content associated with simultaneous intracellular and extracellular freezing. However, in those species that tolerate extracellular freezing, the decline in liquid water content during freezing is relatively slow. Osmotic potential was lower at pre-dawn than at midday in four of the species studied. Nocturnal production of osmotically active solutes may have helped to prevent intracellular freeze dehydration as well as to provide non-colligative protection of cell membranes. Styphelia tameiameiae supercooled to -9·3°C and tolerated tissue freezing to below -15°C, a unique combination of physiological characteristics related to freezing. Tolerance of extracellular ice formation after considerable supercooling may have resulted from low tissue water content and a high degree of intracellular water binding in this species, as determined by nuclear magnetic resonance studies. The climate at high elevations in Hawaii is relatively unpredictable in terms of the duration of subzero temperatures and the lowest subzero temperature reached during the night. It appears that plants growing in this tropical alpine habitat have been under selective pressures for the evolution of freezing tolerance mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...