Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 212 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Our previous results have demonstrated that Phanerochaete flavido-alba decoloration, dephenolization and detoxification of olive oil mill wastewater (OMW) were associated with changes in the ligninolytic major exoenzymes accumulated in the cultures. This paper describes the effect of the two main OMW components (monomeric aromatic compounds and a major brownish polymeric pigment), on extracellular P. flavido-alba ligninolytic enzymes. Laccase was the sole ligninolytic enzyme detected in cultures containing monomeric aromatic compounds. Laccase and an acidic manganese-dependent peroxidase (MnPA, pI〈2.8) were accumulated in cultures with OMW or polymeric pigment. Also, modified manganese-dependent peroxidases were observed mainly in OMW-supplemented cultures. Laccase was more stable to the effect of OMW toxic components and was accumulated in monomeric aromatic-supplemented cultures, suggesting a more important role than manganese-dependent peroxidases in OMW detoxification. Alternatively, MnPA accumulated in cultures containing the polymeric pigment seems to be more essential than laccase for degradation of this recalcitrant macromolecule by P. flavido-alba.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 56 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Copper induces a red pigmentation in cells of the bacterium Myxococcus xanthus when they are incubated in the dark, at suboptimal growth conditions. The colouration results from the accumulation of carotenoids, as demonstrated by chemical analysis, and by the lack of a copper effect on M. xanthus mutants affected in known structural genes for carotenoid synthesis. None of several other metals or oxidative agents can mimic the copper effect on carotenoid synthesis. Until now, blue light was the only environmental agent known to induce carotenogenesis in M. xanthus. As happens for the blue light, copper activates the transcription of the structural genes for carotenoid synthesis through the transcriptional activation of the carQRS operon. This encodes the ECF sigma factor CarQ, directly or indirectly responsible for the activation of the structural genes, and the anti-sigma factor CarR, which physically interacts with CarQ to blocks its action in the absence of external stimuli. All but one of the other regulatory elements known to participate in the induction of carotenoid synthesis by blue light are required for the response to copper. The exception is CarF, a protein required for the light-mediated dismantling of the CarR–CarQ complex. In addition to carotenogenesis, copper induces other unknown cellular mechanisms that confer tolerance to the metal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...