Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 55 (1990), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Recent studies have demonstrated that several transcription factor genes are rapidly activated by neuronal stimulation. For example, we have found that prolonged and repeated seizure activity produced by administration of chemical convulsants induces a rapid and transient increase in mRNA levels of four immediate early genes in rat brain. These genes, zif/268, c-fos, c-jun, andjun-B, encode sequence specific DNA binding proteins thought to act as transcription regulatory factors. To ascertain whether a brief electrically induced seizure discharge of the type utilized in clinical electroconvulsive treatment is sufficient to induce a similar genomic response, we have examined the response of these mRNAs in rat brain following single and repeated electroshock-induced seizures. After electroshock, mRNA levels of each of these genes increase within 15 min, and all except cjun return to near baseline levels within 4 h. Although this response is most prominent in granule cell neurons of the hippocampus, increases are also apparent in neocortex and pyriform cortex. The rapid mRNA response persists in animals receiving a chronic electroshock protocol similar to that used in clinical electroconvulsive therapy. Intrahippocampal infusion of the sodium channel antagonist tetrodotoxin blocks hippocampal mRNA responses without blocking seizures, indicating a role for electrical excitation in the electroshockinduced mRNA response. By contrast, pretreatment with anticonvulsants or selective NMDA antagonists, which reduce seizure intensity and block hindlimb extension, fails to alter mRNA responses, suggesting that seizure induction, rather than spread, is linked to these mRNA responses. Because electroshock induces robust, highly reproducible mRNA responses, it may be useful to study the neuronal genomic response to stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The behavior of a microdialysis probe in vivo is mathematically described. A diffusion-reaction model is developed that not only accounts for transport of substances through tissues and probe membranes but also accounts for transport across the microvasculature and metabolism. Time-dependent equations are presented both for the effluent microdialysate concentration and for concentration profiles about the probe. The analysis applies either to measuring the tissue pharmacokinetics of drugs administered systemically, or for sampling of endogenously produced substances from tissue. In addition, an expression is developed for the transient concentration about the probe when it is used as an infusion device. All mathematical expressions are found to be a sum of an algebraic and an integral term. Theoretical prediction of time-dependent probe behavior in brain has been compared with experimental data for acetaminophen administered at 15 mg/kg to rats by intravenous bolus. Plasma and whole striatal tissue samples were used to describe plasma kinetics and to estimate a capillary permeability-area product of 0.07 min-1. Theoretical prediction of transient effluent dialysate concentrations exhibited close agreement with experimental data over 60 min. Terminal decline of the dialysate effluent concentration was slightly overestimated but theoretical concentrations still lay within the 95% confidence interval of the experimental data at 112 min. Microvasculature transport and metabolism play major roles in determining microdialysate transient responses. Extraction fraction (recovery) has been shown to be a declining function in time for five probe operating conditions. High rates of metabolism and/or capillary transport affect the time required to approach steady-state extraction, shortening the time as the rates increase. Conversely, for substances characterized by low permeabilities and negligible metabolism, experimental situations exist that are predicted to have very slow approaches to microdialysis steady state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The in vitro and in vivo performance of three different semipermeable microdialysis membranes was compared: a proprietary polycarbonate-ether membrane made by Carnegie Medecin; cuprophan, a regenerated cellulose membrane; and polyacrylonitrile. When microdialysis probes were tested in a stirred in vitro solution, large and statistically significant differences among the three membranes in extraction of acid metabolites (3,4-dihydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, and homovanillic acid) and acetaminophen were found. Polyacrylonitrile had the highest extractions in vitro. In contrast, when microdialysis probes were implanted in vivo (in rat striatum), extraction of acid metabolites and acetaminophen did not differ significantly among the different membranes. These results are consistent with predictions made by a mathematical model of microdialysis and can be explained by the fact that in vitro the main factor limiting extraction is membrane resistance to diffusion, whereas tissue resistance to diffusion plays a more dominant role in vivo. These findings suggest that (aside from differences in surface area), the choice of semipermeable membrane will generally have little effect on in vivo microdialysis results. Furthermore, in vitro measurements of microdialysis probe extractions are not a reliable way of calibrating in vivo performance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 9996-10010 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have investigated the ability of a simple phenomenological theory to describe the behavior of symmetric diblock copolymer thin films confined between two hard surfaces. Prior knowledge of the morphology in the confined films is crucial for applying this theory to predict the phase diagram of such systems. Taking advantage of our observations in Monte Carlo simulations, we use the theory to construct phase diagrams for thin films confined between patterned-homogeneous surfaces, and obtain good agreement with our results of simulations. Two conditions are essential for obtaining long-range ordered perpendicular lamellae: a lower stripe-patterned surface with the surface pattern period Ls comparable to the bulk lamellar period L0, and an upper neutral or weakly preferential surface. We have also examined the undulation of perpendicular lamellae between two hard surfaces. For the cases of two homogeneous (preferential) surfaces and patterned-preferential surfaces, our calculations using the phenomenological theory indicate that the amplitudes of the undulation are on the same order of magnitude as observed in our Monte Carlo simulations, and are one order of magnitude larger than previously reported. The theory, however, is unable to capture the shape of the undulation. For the case of patterned-neutral surfaces, we find that an earlier analysis is unable to yield the undulations that would stabilize the perpendicular lamellar morphology. We have addressed this issue and obtained undulations that are consistent with our observations from Monte Carlo simulations. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 450-464 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Thin films of symmetric diblock copolymers confined between two hard, flat and homogeneous surfaces have been investigated by means of Monte Carlo simulations on a simple cubic lattice. For such simulations, the match between bulk lamellar period L0 and the simulation box size is crucial to obtain meaningful results. The simulations have been performed in an expanded grand-canonical ensemble, where the chemical potential and the temperature of the confined films are specified and the density is allowed to fluctuate. The dependence of morphology, density, and chain conformation in the confined films on the type of surfaces, surface separation, and the strength of surface-block interactions has been studied systematically. Our results are consistent with experimental findings. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 64 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: As immediate early genes (IEGs) are thought to play a critical role in mediating stimulus-induced neuronal plasticity, several laboratories have characterized the IEG response induced by cocaine to help define the changes in gene expression that may underlie its long-lasting behavioral effects. Although activation of several transcription factor IEGs has been described, little is known about which “effector” IEGs, if any, are also induced. In the present study, we have examined whether cocaine administration affects expression of a recently identified “effector” IEG, referred to as arc (activity-regulated, cytoskeleton-associated). This IEG encodes a protein with homology to spectrin that appears to be associated with the actin cytoskeleton. Using in situ hybridization, we have found that systemic cocaine administration elicits a robust, transient rise in arc mRNA levels in striatum, which is suppressed by D1 dopamine receptor blockade, reserpine treatment, or striatal 6-hydroxydopamine lesions. D2 receptor antagonists triggered arc expression when administered alone. Immunohistochemical studies indicated that Arc protein induced by cocaine is expressed in neuronal cell bodies and dendrites. As Arc appears to be a component of the neuronal cytoskeleton, it may be involved in structural alterations underlying neuronal plasticity triggered by cocaine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 58 (1992), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Recent studies have shown that dopamine receptor agonists induce expression of Fos-like immunoreactivity in rat striatal neurons. The protooncogene c-fos belongs to a family of immediate early genes that are rapidly induced in fibroblasts by growth factors. In light of previous findings that several immediate early gene mRNAs that encode proven or putative transcription factors are differentially regulated by neuronal stimulation in vivo, we have examined the effect of dopaminergic agents on mRNA levels of several such genes using in situ hybridization and northern blot analysis. d-Amphetamine (2.5-10 mg/kg i.p.) causes a rapid but transient dose-dependent increase in zif268 and jun-B mRNA levels in striatum that was abolished by striatal 6-hydroxydopamine lesions or by pretreatment with the specific D1 receptor antagonist SCH-23390 but not by specific D2 receptor antagonists. Apomorphine, a dopamine agonist that acts at both D1 and D2 receptors, and SKF-38393, a specific D1 receptor agonist, produce similar mRNA changes in rats pretreated with either 6-hydroxydopamine or reserpine, whereas LY-171,555, a specific D2 receptor agonist, has no effect. Direct dopamine agonist effects on these immediate early gene mRNA levels are also blocked by D1 but not by D2 antagonists. We observed similar, although less robust, changes in c-fos and fos-B mRNA levels. These results demonstrate that striatal D1 dopamine receptors are coupled to activation of multiple transcription factor genes, including zif268 and jun-B as well as members of the fos family.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Spatial solute concentration profiles resulting from in vivo microdialysis were measured in rat caudate-putamen by quantitative autoradiography. Radiolabeled sucrose was included in the dialysate, and the tissue concentration profile measured after infusions of 14 min and 61.5 min in an acute preparation. In addition, the changes in sucrose extraction fraction over time were followed in vivo and in a simple in vitro system consisting of 0.5% agarose. These experimental results were then compared with mathematical simulations of microdialysis in vitro and in vivo. Simulations of in vitro microdialysis agreed well with experimental results. In vivo, the autoradiograms of the tissue concentration profiles showed clear evidence of substantial differences between 14 and 61.5 min, even though the change in extraction fraction was relatively small over that period. Comparison with simulated results showed that the model substantially underpre-dicted the observed extraction fraction and overall amount of sucrose in the tissue. A sensitivity analysis of the various model parameters suggested a tissue extracellular volume fraction of approximately 40% following probe implantation. We conclude that the injury from probe insertion initially causes disruption of the blood-brain barrier in the vicinity of the probe, and this disruption leads to an influx of water and plasma constituents, causing a vasogenic edema.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Recent studies have identified protein tyrosine phosphorylation as a major intracellular signaling pathway. However, little is known about regulation of this signaling pathway in neuronal systems. To help identify changes in levels of protein tyrosine phosphorylation in brain, we have utilized specific anti-phosphotyrosine antibodies to detect phosphotyrosine-containing proteins by immunoblotting techniques. We have found that electroconvulsive treatment induces a selective increase in tyrosine phosphorylation of a soluble 40-kDa protein. The rise is rapid and transient, reaching maximal levels at 1–2 min and returning to basal levels by 8 min. The phosphotyrosine-containing 40-kDa protein is most prominent in hippocampus, smaller in neocortex, and not detected in brainstem or cerebellum. A phosphotyrosine-containing 42-kDa protein present in several cell types has recently been identified as a serine/threonine phosphotransferase, referred to as microtubule-associated protein 2 kinase. Comparison of the levels of tyrosine phosphorylation of the 40-kDa protein and microtubule-associated protein 2 kinase activity during column chromatography of hippocampal extracts demonstrates that the phosphotyrosine-containing 40-kDa protein and microtubule-associated protein 2 co-purify. Moreover, the tyrosine phosphorylation of the 40-kDa protein and microtubule-associated protein 2 kinase activity are increased to a similar extent following electroconvulsive treatment. These findings suggest that the phosphotyrosine-containing 40-kDa protein identified in brain is closely related to microtubule-associated protein 2 kinase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 51 (1988), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Fast and slow axonal transports were studied in the optic nerve of the garfish and compared with previous studies on the olfactory nerve. The composition of fast-transport proteins was very similar in the two nerves. Although the velocity of fast transport was slightly lower in the optic nerve, there was a linear increase in velocity with temperature in both nerves. As in the olfactory nerve, only a single wave of slow-transport protein radioactivity moves along the nerve. The velocity of slow transport also increased linearly with temperature, but the coefficient was less than in the olfactory system. The composition of slow transport in the optic nerve was significantly different from that in the olfactory nerve, a finding reflecting the different cytoskeletal constituents of the two types of axons. The slow wave could be differentiated into several subcomponents, with the order of velocities being a 105-kilodalton protein and actin 〉 tubulins and clathrin 〉 fodrin ≫ neurofilaments. It can be concluded that the temperature dependence of fast and slow axonal transport in different nerves reflects the influence of temperature on the individual polypeptides constituting the various transport phases. The garfish optic nerve preparation may be advantageous for studies of axonal transport in retinal ganglion cell axons, because its great length avoids the complications of having to study transport in the optic tract or in material accumulating at the tectum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...