Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Years
Keywords
Language
  • 1
    Publication Date: 2020-11-13
    Description: In the online traveling salesman problem requests for visits to cities (points in a metric space) arrive online while the salesman is traveling. The salesman moves at no more than unit speed and starts and ends his work at a designated origin. The objective is to find a routing for the salesman which finishes as early as possible. Performance of algorithms is measured through their competitive ratio, comparing the outcome of the algorithms with that of an adversary who provides the problem instance and therefore is able to achieve the optimal offline solution. Objections against such omnipotent adversaries have lead us to devise an adversary that is in a natural way, in the context of routing problems, more restricted in power. For the exposition we consider the online traveling salesman problem on the metric space given by the non-negative part of the real line. We show that a very natural strategy is~$3/2$-competitive against the conventional adversary, which matches the lower bound on competitive ratios achievable for algorithms for this problem. Against the more ``\emph{fair adversary}'', that we propose, we show that there exists an algorithm with competitive ratio $\frac{1+\sqrt{17}}{4}\approx 1.28$ and provide a matching lower bound. We also show competitiveness results for a special class of algorithms (called zealous algorithms) that do not allow waiting time for the server as long as there are requests unserved.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-14
    Description: In the online traveling salesman problem $OLTSP$ requests for visits to cities arrive online while the salesman is traveling. We study the $F{\_max}-OLTSP$ where the objective is to minimize the maximum flow time. This objective is particularly interesting for applications. Unfortunately, there can be no competitive algorithm, neither deterministic nor randomized. Hence, competitive analysis fails to distinguish online algorithms. Not even resource augmentation which is helpful in scheduling works as a remedy. This unsatisfactory situation motivates the search for alternative analysis methods. We introduce a natural restriction on the adversary for the $F{\_max}-OLTSP$ on the real line. A \emph{non-abusive adversary} may only move in a direction if there are yet unserved requests on this side. Our main result is an algorithm which achieves a constant competitive ratio against the non-abusive adversary.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-13
    Description: We introduce a new problem that was motivated by a (more complicated) problem arising in a robotized assembly enviroment. The bin coloring problem is to pack unit size colored items into bins, such that the maximum number of different colors per bin is minimized. Each bin has size~$B\in\mathbb{N}$. The packing process is subject to the constraint that at any moment in time at most $q\in\mathbb{N}$ bins may be partially filled. Moreover, bins may only be closed if they are filled completely. An online algorithm must pack each item must be packed without knowledge of any future items. We investigate the existence of competitive online algorithms for the online uniform binpacking problem. We show upper bounds for the bin coloring problem. We prove an upper bound of $3q$ - 1 and a lower bound of $2q$ for the competitive ratio of a natural greedy-type algorithm, and show that surprisingly a trivial algorithm which uses only one open bin has a strictly better competitive ratio of $2q$ - 1. Morever, we show that any deterministic algorithm has a competitive ratio $\Omega (q)$ and that randomization does not improve this lower bound even when the adversary is oblivious.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-16
    Description: In the cake cutting problem, $n\ge2$ players want to cut a cake into $n$ pieces so that every player gets a ``fair'' share of the cake by his own measure. We describe a protocol with $n-1$~cuts in which each player can enforce to get a share of at least~$1/(2n-2)$. Moreover we show that no protocol with $n-1$~cuts can guarantee a better fraction.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...