Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Terminal degeneration ; Dorsal rhizotomy ; Glomeruli ; Spinal cord ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary After cervical dorsal rhizotomy, small dark central terminals (CI) of glomeruli underwent electron dense changes at 8 h and were all degenerated at 36 h; their number persisted, though slightly diminished, up to 15 days, glial engulfment being negligible. Light large central terminals without neurofilaments (CIIa) showed electron-lucent or electron-dense degeneration from 14 to 36 h, while those with neurofilaments (CIIb) exhibited increased neurofilamentous areas, with depletion and presynaptic concentration of synaptic vesicles as in the electron-lucent change, at the 8–36 h postrhizotomy periods. Both CII-varieties were all degenerated at 36 h and became electron dense at 48 h; glial phagocytosis was intense and no terminals were present after 4 days. It is concluded that in the rat the 3 types of central glomerular terminals are primary axons, and that each type undergoes a different pattern of degeneration which points to a separate primary afferent origin. Numerous nonglomerular axodendritic endings began showing electron-dense degeneration at 8 h which rapidly masked their normal structure, although most appeared to contain round agranular vesicles, and some of them dense-cored vesicles (in lamina I). A few endings exhibited electronlucent degeneration. Labeling methods seem preferable for studying the primary origin of nonglomerular terminals, due to the difficulty in recognizing the normal predegenerative structure of these profiles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Using serial section EM analysis, synaptic organization of glomeruli in lamina II of the dorsal horn of the rat has been examined. Four CI-terminals (small, dark and sinuous), four CIIa (large, light and regular, without neurofilaments) and four CIIb, (with neurofilaments) at the centres of synaptic glomeruli of types I, IIa and IIb, respectively, were serially sectioned and reconstructed. Asymmetrical synapses between the central terminal (C) and dendritic profiles without synaptic vesicles (D) prevailed in all types of glomeruli. Symmetrical dendroaxonic contacts with presynaptic dendrites (V1 → C) occurred practically only in type I glomeruli in which there were also more asymmetrical C → V1 contacts than in type II glomeruli. Symmetrical axoaxonic synapses V2 → C were more abundant in type IIa and IIb glomeruli. Type IIa glomeruli had a significantly larger number of C → D synapses and of all synapses per unit area of C surface, than type IIb glomeruli. Triadic systems with C and D postsynaptic to V2 were nearly as numerous as those involving V1 in type I glomeruli. Triads with V2 were however largely preponderant in type IIa and virtually exclusive in type IIb. It thus seems that each of the three types of glomerulus has its own pattern of synaptic interactions which might reflect specific complexes of feed-forward and feed-back mechanisms. In type I glomeruli, excitation of second-order neurons by nociceptive CI terminals may be controlled in similar proportions by presynaptic dendrites excited within the glomerulus by the C terminal itself, or by peripheral axons excited from outside the glomerulus. This kind of control is likely to prevail in type IIa glomeruli and to be the only efficient modulatory mechanism in type IIb glomeruli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...