Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 7256-7264 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High quality epitaxial Co and Fe silicides have been grown by molecular beam epitaxy on Si(111) and Si(001) substrates with film thicknesses ranging between 25 and 8400 A(ring). We used Rutherford backscattering spectrometry channeling techniques to measure the lattice distortion as a function of film thickness. The critical thickness hc corresponding to the film thickness at which strain relieving dislocations begin to appear was determined for CoSi2 on Si(111) and Si(001) as well as for Si on CoSi2(111). For CoSi2 on Si(001), a larger critical thickness was obtained than on Si(111), where hc is ∼45 A(ring). Epitaxial Si on CoSi2(111) was found to be under a compressive strain up to thicknesses of about 350 A(ring) depending on substrate misorientation. Strain measurements were also performed on epitaxially stabilized Co and Fe monosilicides with the CsCl structure. Channeling measurements on thick epitaxial films of bcc-Fe, Fe3Si, FeSi, and Fe0.5Si were used to determine the crystalline quality. Excellent channeling minimum yields of 4.0% were found for bcc-Fe/Si(111). The results are compared with structural information obtained from x-ray diffraction and Brillouin scattering spectroscopy. © 1994 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Zeitschrift für angewandte Mathematik und Physik 22 (1971), S. 792-792 
    ISSN: 1420-9039
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...