Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Years
Language
  • 1
    Publication Date: 2023-04-26
    Description: Governing equations are essential to the study of nonlinear dynamics, often enabling the prediction of previously unseen behaviors as well as the inclusion into control strategies. The discovery of governing equations from data thus has the potential to transform data-rich fields where well-established dynamical models remain unknown. This work contributes to the recent trend in data-driven sparse identification of nonlinear dynamics of finding the best sparse fit to observational data in a large library of potential nonlinear models. We propose an efficient first-order Conditional Gradient algorithm for solving the underlying optimization problem. In comparison to the most prominent alternative algorithms, the new algorithm shows significantly improved performance on several essential issues like sparsity-induction, structure-preservation, noise robustness, and sample efficiency. We demonstrate these advantages on several dynamics from the field of synchronization, particle dynamics, and enzyme chemistry.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-03
    Description: • Currently, domain propagation in state-of-the-art MIP solvers is single thread only. • The paper presents a novel, efficient GPU algorithm to perform domain propagation. • Challenges are dynamic algorithmic behavior, dependency structures, sparsity patterns. • The algorithm is capable of running entirely on the GPU with no CPU involvement. • We achieve speed-ups of around 10x to 20x, up to 180x on favorably-large instances.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-03
    Description: Propagation of linear constraints has become a crucial sub-routine in modern Mixed-Integer Programming (MIP) solvers. In practice, iterative algorithms with tolerance-based stopping criteria are used to avoid problems with slow or infinite convergence. However, these heuristic stopping criteria can pose difficulties for fairly comparing the efficiency of different implementations of iterative propagation algorithms in a real-world setting. Most significantly, the presence of unbounded variable domains in the problem formulation makes it difficult to quantify the relative size of reductions performed on them. In this work, we develop a method to measure -- independently of the algorithmic design -- the progress that a given iterative propagation procedure has made at a given point in time during its execution. Our measure makes it possible to study and better compare the behavior of bounds propagation algorithms for linear constraints. We apply the new measure to answer two questions of practical relevance: (i) We investigate to what extent heuristic stopping criteria can lead to premature termination on real-world MIP instances. (ii) We compare a GPU-parallel propagation algorithm against a sequential state-of-the-art implementation and show that the parallel version is even more competitive in a real-world setting than originally reported.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-03
    Description: Quantum computing is arguably one of the most revolutionary and disruptive technologies of this century. Due to the ever-increasing number of potential applications as well as the continuing rise in complexity, the development, simulation, optimization, and physical realization of quantum circuits is of utmost importance for designing novel algorithms. We show how matrix product states (MPSs) and matrix product operators (MPOs) can be used to express certain quantum states, quantum gates, and entire quantum circuits as low-rank tensors. This enables the analysis and simulation of complex quantum circuits on classical computers and to gain insight into the underlying structure of the system. We present different examples to demonstrate the advantages of MPO formulations and show that they are more efficient than conventional techniques if the bond dimensions of the wave function representation can be kept small throughout the simulation.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...