Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-041X
    Keywords: Key words Thermobia domestica ; Thysanura ; teashirt ; HOM-C ; Insect evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  During embryogenesis of the fruit fly, Drosophila melanogaster, the homeotic genes are required to specify proper cell fates along the anterior-posterior axis of the embryo. We cloned partial cDNAs of homologues of the Drosophila homeotic gene teashirt and five of the homeotic-complex (HOM-C) genes from the thysanuran insect, Thermobia domestica, and assayed their embryonic expression patterns. The HOM-C genes we examined were labial, Antennapedia, Ultrabithorax, abdominal-A and Abdominal-B. As the expression pattern of these HOM-C genes is largely conserved among insects and as Thermobia is a member of a phylogenetically basal order of insects, we were able to infer their ancestral expression patterns in insects. We compare the expression patterns of the Thermobia HOM-C genes with their expression in Drosophila and other insects and discuss the potential roles these genes may have played in insect evolution. Interestingly, the teashirt homologue shows greater variability between Thermobia and Drosophila than any of the HOM-C genes. In particular, teashirt is not expressed strongly in the Thermobia abdomen, unlike Drosophila teashirt. We propose that teashirt expression has expanded posteriorly in Drosophila and contributed to a homogenization of the Drosophila larval thorax and abdomen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-041X
    Keywords: Key words engrailed ; Thermobia domestica ; Oncopeltus fasciatus ; Dorsal ridge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Homologues of the Drosophila segment polarity gene engrailed have been cloned from many insect species, as well as other arthropods and non-arthropods. We have cloned partial cDNAs of two engrailed homologues, which we call engrailed-related genes, from the phylogenetically basal insect, Thermobia domestica (Order Thysanura) and possibly as many as four engrailed-related genes from the phylogenetically intermediate insect, Oncopeltus fasciatus (Order Hemiptera). Previous to our findings, only single engrailed-related homologues had been found in phylogenetically intermediate insect species (Tribolium and Schistocerca) and in the crustacean Artemia, while two engrailed-related homologues have been found in more derived orders (Hymenoptera and the engrailed and invected genes of lepidopterans and dipterans). Consequently, we performed a phylogenetic analysis of insect engrailed-related genes to determine whether insects ancestrally had one or two engrailed-related genes. We have found evidence of concerted evolution among engrailed-related paralogues, however, that masks the true phylogenetic history of these genes; the phylogeny may only be decipherable, therefore, by examining the presence or absence of engrailed-specific and invected-specific motifs, which will require cloning the full length cDNAs from more species. In addition, we examined the embryonic expression pattern of the two Thermobia engrailed-related genes; like Drosophila engrailed and invected, they are expressed in very similar patterns, but show one temporal difference in pregnathal segments that correlates with the tentative phylogenetic placement of the genes. Thermobia engrailed-related expression also confirms that the dorsal ridge is an ancient structure in insects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 380 (1996), S. 395-395 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR - Arthropods, vast in number and with enormous variation in body forms, are a fascinating group. We have found that myriapods (millipedes, centipedes and allies) have different mandibular origins from insects and crustaceans, which is of consequence for resolving phylogenetic relationships ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...