Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 67-68 (Apr. 1999), p. 89-100 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 6203-6210 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Direct measurement of the deep defect density in thin amorphous silicon films with the help of the "absolute'' constant photocurrent method is demonstrated here. We describe in detail how the optical (photocurrent) absorption spectrum can be measured directly in absolute units (cm−1) without additional calibration and undisturbed by interference fringes. Computer simulation was performed to demonstrate absolute precision of the measurement and to explain residual interferences which are sometimes observed. The residual interferences are shown to be direct fingerprints of an inhomogeneous defect distribution. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 1800-1805 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have studied charge transport anisotropy in microcrystalline silicon (μc-Si:H) by comparing diffusion length measured parallel to the substrate by steady stage photocarrier grating and perpendicular to the substrate by surface photovoltage method (SPV). We have developed a SPV evaluation procedure which allowed us to exclude the effect of light scattering at the naturally rough surface of the μc-Si:H. The procedure allows us to deduce not only the diffusion length, but also the depth of the depletion layer at the surface and recombination coefficients at both top and bottom interfaces of the film. With growing μc-Si:H film thickness the size of the crystallites increases, leading to higher roughness and thus also light scattering. At the same time density of grain boundaries decreases, resulting in an increase of the diffusion length and of the surface depletion layer depth. For all samples the diffusion length perpendicular to the substrate was several times higher than the diffusion length parallel to it, clearly confirming previous indication of the transport anisotropy resulting from the measurements of coplanar and sandwich conductivity. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 148-160 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Optical characterization methods were applied to a series of microcrystalline silicon thin films and solar cells deposited by the very high frequency glow discharge technique. Bulk and surface light scattering effects were analyzed. A detailed theory for evaluation of the optical absorption coefficient α from transmittance, reflectance and absorptance (with the help of constant photocurrent method) measurements in a broad spectral region is presented for the case of surface and bulk light scattering. The spectral dependence of α is interpreted in terms of defect density, disorder, crystalline/amorphous fraction and material morphology. The enhanced light absorption in microcrystalline silicon films and solar cells is mainly due to a longer optical path as the result of an efficient diffuse light scattering at the textured film surface. This light scattering effect is a key characteristic of efficient thin-film-silicon solar cells. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 80 (2002), S. 719-721 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The spectral dependence of the optical absorption coefficient in thin films of hydrogenated microcrystalline silicon is measured over nine orders of magnitude in the subgap, defect-connected region, and in the above-the-band gap region. Transmittance, reflectance, and constant photocurrent method measurements are combined with Fourier-transform photocurrent spectroscopy (FTPS). Results are analyzed and interpreted as due to electron transitions from defects or interband electron transitions, all having direct relevance to the thin-film microcrystalline silicon solar cell performance. FTPS is a fast and sensitive quantitative method for quality assessment of microcrystalline silicon absorber in solar cells and can be used for quality monitoring in solar cell production. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4854
    Keywords: wide gap amorphous silicon ; photoluminescence ; electroluminescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A series of samples of hydrogenated amorphous silicon (a-Si:H) was prepared from silane diluted highly with He by the microwave electron-cyclotron-resonance PE CVD. Such a wide gap (E≥2.0 eV) a-Si:H emits room temperature photoluminescence (PL) in the visible region. We attempt to reveal the microscopic origin of this PL by monitoring variations of PL intensity vs frequency of infrared vibrations in the vicinity of 2100 cm−1. We find that oligosilanes -(SiH2)n- act as one type of possible luminescence centres. We report also on room temperature electroluminescence (EL) from p-i-n junctions. Surprisingly, and unlike p-i-n structures from standard a-Si:H, weak EL radiation with external quantum efficiency of the order of 10−5% is emitted under reverse bias only. EL and PL emission spectra resemble strongly each other, except high energy wing of the EL spectrum. This high energy widening indicates the participation of hot electrons in the EL excitation mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...