Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 65 (1992), S. 37-42 
    ISSN: 1439-6327
    Keywords: Alveolar-arterialPO2 difference ; Pulmonary gas exchange ; VO2max ; Hypoxia ; Hyperoxia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary These experiments examined the exercise-induced changes in pulmonary gas exchange in elite endurance athletes and tested the hypothesis that an inadequate hyperventilatory response might explain the large intersubject variability in arterial partial pressure of oxygen (P a02) during heavy exercise in this population. Twelve highly trained endurance cyclists [maximum oxygen consumption (VO2max) range = 65-77 ml·kg−1·min−1] performed a normoxic graded exercise test on a cycle ergometer toVO2max at sea level. During incremental exercise atVO2max 5 of the 12 subjects had ideal alveolar to arterial P02 gradients (P A-aO2) of above 5 kPa (range 5-5.7) and a decline from restingP aO2 (ΔP aO2) 2.4 kPa or above (range 2.4-2.7). In contrast, 4 subjects had a maximal exercise (P A-aO2) of 4.0-4.3 kPa with ΔP aO2 of 0.4-1.3 kPa while the remaining 3 subjects hadP A-aO2 of 4.3-5 kPa with ΔP aO2 between 1.7 and 2.0 kPa. The correlation between PAO2 andP aO2 atVO2max was 0.17. Further, the correlation between the ratio of ventilation to oxygen consumption VSP aO2 and arterial partial pressure of carbon dioxide VSP aO2 atVO2max was 0.17 and 0.34, respectively. These experiments demonstrate that heavy exercise results in significantly compromised pulmonary gas exchange in approximately 40% of the elite endurance athletes studied. These data do not support the hypothesis that the principal mechanism to explain this gas exchange failure is an inadequate hyperventilatory response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The purpose of this investigation was to examine critically the validity of a computerized quantitative microphotometric histochemical technique for the determination of succinate dehydrogenase (SDH) activity in skeletal muscle fibres. Sections from the anterior costal diaphragm were removed from Fischer-344 rats (n = 12) and assayed histochemically to determine SDH activity. The SDH activity in individual muscle fibres was computed using a computerized microphotometric histochemical technique which involves measurement of the optical density of deposited diformazan derived from nitroblue tetrazolium within the fibres. To validate the histochemical technique, whole muscle SDH activities were calculated from the histochemical procedure and were compared to SDH activities determined from whole muscle homogenates via a standard quantitative biochemical assay. The mean within-day variability of the computerized microphotometric histochemical technique of determining SDH activity was 6% (range = 0.5–10.9%) for an area containing ~50 fibres and 6.1% (range = 1.05–14.9%) for an individual muscle fibre. Similarly, the mean between-day variability of the microphotometric histochemical technique of determining SDH activity was 5.9% (range = 2.6–13.9%) for an area containing ~50 fibres and 6.6% (range = 2.2–13.9%) for an individual muscle fibre. The inter-class correlation coefficient between biochemically determined SDH activity and histochemically determined SDH activity was r = 0.83 (p 〈 0.05). Collectively, these data demonstrate that the quantitative histochemical technique of Blanco et al. (1988) is both valid and reliable in the determination of SDH activity in skeletal muscle fibres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1439-6327
    Keywords: Key words Fatigue ; Antioxidant enzymes ; Non-protein thiols ; Lipid peroxidation ; Oxidative stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Endurance exercise training promotes a small but significant increase in antioxidant enzyme activity in the costal diaphragm (DIA) of rodents. It is unclear if these training-induced improvements in muscle antioxidant capacity are large enough to reduce oxidative stress during prolonged contractile activity. To test the hypothesis that training-related increases in DIA antioxidant capacity reduces contraction-induced lipid peroxidation, we exercise trained adult female Sprague-Dawley (n = 7) rats on a motor-driven treadmill for 12 weeks at ≈ 75% maximal O2 consumption (90 min/day). Control animals (n = 8) remained sedentary during the same 12-week period. After training, DIA strips from animals in both experimental groups were excised and subjected to an in vitro fatigue contractile protocol in which the muscle was stimulated for 60 min at a frequency of 30 Hz, every 2 s, with a train duration of 330 m. Compared to the controls, endurance training resulted in an increase (P 〈 0.05) in diaphragmatic non-protein thiols and in the activity of the antioxidant enzyme superoxide dismutase. Following the contractile protocol, lipid peroxidation was significantly lower (P 〈 0.05) in the trained DIA compared to the controls. These data support the hypothesis that endurance exercise training-induced increases in DIA antioxidant capacity protect the muscle against contractile-related oxidative stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1439-6327
    Keywords: Key words Diaphragm ; Oxidative stress ; Fatigue ; Lipid peroxidation ; Antioxidants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract These experiments tested the hypothesis that short-term endurance exercise training would rapidly improve (within 5 days) the diaphragm oxidative/antioxidant capacity and protect the diaphragm against contraction-induced oxidative stress. To test this postulate, male Sprague-Dawley rats (6 weeks old) ran on a motorized treadmill for 5 consecutive days (40–60 min · day−1) at approximately 65% maximal oxygen uptake. Costal diaphragm strips were excised from both sedentary control (CON, n=14) and trained (TR, n=13) animals 24 h after the last exercise session, for measurement of in vitro contraction properties and selected biochemical parameters of oxidative/antioxidant capacity. Training did not alter diaphragm force-frequency characteristics over a full range of submaximal and maximal stimulation frequencies (P 〉 0.05). In contrast, training improved diaphragm resistance to fatigue as contraction forces were better-maintained by the diaphragms of the TR animals during a submaximal 60-min fatigue protocol (P 〈 0.05). Following the fatigue protocol, diaphragm strips from the TR animals contained 30% lower concentrations of lipid hydroperoxides compared to CON (P 〈 0.05). Biochemical analysis revealed that exercise training increased diaphragm oxidative and antioxidant capacity (citrate synthase activity +18%, catalase activity +24%, total superoxide dismutase activity +20%, glutathione concentration +10%) (P 〈 0.05). These data indicate that short-term exercise training can rapidly elevate oxidative capacity as well as enzymatic and non-enzymatic antioxidant defenses in the diaphragm. Furthermore, this up-regulation in antioxidant defenses would be accompanied by a reduction in contraction-induced lipid peroxidation and an increased fatigue resistance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1439-6327
    Keywords: Plasma volume ; Fluid replacement ; Prolonged exercise ; Hypovolemia ; Hydration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Previous experiments have demonstrated that consumption of a glucose polymer-electrolyte (GP-E) beverage is superior to water in minimizing exercise-induced decreases in plasma volume (PV). We tested the hypothesis that elevated plasma concentrations of vasopressin and/or aldosterone above that seen with water ingestion may explain this observation. Six trained cyclists performed 115 min of constant-load exercise (approximately 65% of maximal oxygen consumption) on a cycle ergometer on two occasions with 7 days separating experiments. Ambient conditions were maintained relatively constant for both exercise tests (29–30° C; 58–66% relative humidity). During each experiment, subjects consumed 400 ml of one of the following beverages 20 min prior to exercise and 275 ml immediately prior to and every 15 min during exercise: (1) distilled water or (2) GP-E drink contents = 7% carbohydrate (glucose polymers and fructose; 9 mmol·1−1 sodium; 5 mmol·1−1 potassium; osmolality 250 mosmol·1−1). No significant difference (P〉0.05) existed in mean skin temperature, rectal temperature, oxygen consumption, carbon dioxide production or the respiratory exchange ratio between treatments. Further, no significant differences existed in plasma osmolality and plasma concentrations of sodium, potassium, chloride or magnesium between treatments. Plasma volume was better maintained (P〈0.05) in the GP-E trial at 90 and 120 min of exercise when compared to the water treatment. No differences existed in plasma levels of vasopressin or aldosterone between treatments at any measurement period. Further, the correlation coefficients between plasma concentrations of vasopressin and aldosterone and change in PV during exercise were 0.42 (P〈0.05) and 0.16 (P〉0.05), respectively. Therefore, although these experiments support the notion that a GP-E beverage is superior to water in minimizing exercise-induced disturbances in PV during prolonged exercise, the mechanism to explain this observation is not due to differences in plasma concentrations of vasopressin or aldosterone alone.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 52 (1984), S. 173-177 
    ISSN: 1439-6327
    Keywords: Anaerobic threshold ; Ventilatory threshold ; Exercise ventilation ; Gas exchange ; Blood lactate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Anaerobic threshold has been defined as the oxygen uptake ( $$\dot V_{{\text{O}}_{\text{2}} }$$ ) at which blood lactate (La) begins to rise systematically during graded exercise (Davis et al. 1982). It has become common practice in the literature to estimate the anaerobic threshold by using ventilatory and/or gas exchange alterations. However, confusion exists as to the validity of this practice. The purpose of this study was to examine the precision with which ventilatory and gas exchange techniques for determining anaerobic threshold predicted the anaerobic threshold resolved by La criteria. The anaerobic threshold was chosen using three criteria: (1) systematic increase in blood La (ATLa), (2) systematic increase in ventilatory equivalent for O2 with no change in the ventilatory equivalent for CO2 ( $${\text{AT}}_{\dot V_{\text{E}} } /\dot V_{{\text{O}}_{\text{2}} }$$ ), and (3) non-linear increase in expired ventilation graphed as a function of $$\dot V_{{\text{O}}_{\text{2}} }$$ ( $${\text{AT}}_{\dot V_{\text{E}} }$$ ). Thirteen trained male subjects performed an incremental cycle ergometer test to exhaustion in which the load was increased by 30 W every 3 minutes. Ventilation, gas exchange measures, and blood samples for La analysis were obtained every 3rd min throughout the test. In five of the thirteen subjects tested the anaerobic threshold determined by ventilatory and gas exchange alterations did not occur at the same $$\dot V_{{\text{O}}_{\text{2}} }$$ as the ATLa. The highest correlation between a gas exchange anaerobic threshold and ATLa was found for $${\text{AT}}_{\dot V_{\text{E}} } /\dot V_{{\text{O}}_{\text{2}} }$$ and was r=0.63 (P〈0.05). These data provide evidence that the ATLa and $${\text{AT}}_{\dot V_{\text{E}} }$$ do not always occur simultaneously and suggest limitations in using ventilatory or gas exchange measures to estimate the ATla.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1439-6327
    Keywords: Exercise ; Induced hypoxemia ; Incremental exercise ; Trained athletes ; Arterial oxyhemoglobin saturation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Recent evidence suggests that exercise-induced hypoxemia (EIH) may occur in healthy trained endurance athletes. However, at present, no data exist to describe the regularity of EIH in athletes or non-athletes. Therefore, the purpose of the present investigation was to determine the incidence of EIH during exercise in healthy subjects varying in physical fitness. Subjects (N=68) performed an incremental cycle ergometer test to volitional fatigue with percent arterial oxyhemoglobin saturation (%SaO2) measured min-by-min. For the purpose of data analysis subjects were divided into three groups according to their level of physical training: 1) untrained (N=16), 2) moderately trained (N=27), and 3) elite highly trained endurance athletes (N=25). EIH was defined as a %SaO2 of ≤91% during exercise. EIH did not occur in any of the untrained subjects or the moderately trained subjects. However, EIH occurred in 52% of the highly trained endurance athletes tested and was highly reproducible (r=0.95; P〈0.05). These findings further confirm the existence of EIH in healthy highly trained endurance athletes and suggests a rather high incidence of EIH in this healthy population. Hence, it is important that the clinician or physiologist performing exercise testing in elite endurance athletes recognize that EIH can and does occur in the elite endurance athlete in the absence of lung disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1439-6327
    Keywords: Electrolytes ; Fluid balance ; Glucose ; Exercise metabolism ; Blood pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The purpose of these experiments was to examine the influence of various fluid replacement drinks on exercise-induced disturbances in homeostasis during heavy exercise. Nine trained cyclists performed constant load exercise on a cycle ergometer to fatigue on three occasions with 1-week separating experiments. The work rate was set initially at ∼ 85% of $$\dot V_{o_{2{\text{ }}max} } $$ (range 82–88%) with fatigue being defined as a 10% decline in power output below the initial value. During each experiment subjects consumed one of the following three beverages prior to and every 15 min during exercise: (1) non-electrolyte placebo (NEP; 31 mosmol · kg−1); (2) glucose polymer drink containing electrolytes (GP; 7% CHO, 231 mosmol · kg−1), and (3) electrolyte placebo drink without carbohydrate (EP; 48 mosmol · kg−1). Both the GP and EP beverage contained sodium citrate/citric acid (C) as a flavoring agent while C was not contained in the NEP drink. Although seven of nine subjects worked longer during the GP and EP treatment when compared with the NEP trial, the difference was not significant (P〉0.05). No differences (P〉0.05) existed between the GP and EP treatments in performance time. Exercise changes in rectal temperature, heart rate, Δ % plasma volume and plasma concentrations of total protein, free fatty acids, glucose, lactate, potassium, chloride, calcium, and sodium did not differ (P〉0.05) between trials. In contrast, blood hydrogen ion concentration [H+] was significantly lower (P〈0.05) at 30 min of exercise during the GP and EP treatment when compared with the NEP run. These data provide evidence that electrolyte drinks do not minimize exercise-induced disturbances in blood-electrolyte concentrations during heavy execrcise when compared with nonelectrolyte drinks; however, these results suggest that fluid replacement beverages containing buffers (i.e. C) and/or electrolytes may minimize blood alterations in [H+] during intense exercise. Additional research is required to determine if the buffering influence of these beverages has an ergogenic benefit during heavy exercise.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 54 (1985), S. 306-308 
    ISSN: 1439-6327
    Keywords: Oxygen uptake kinetics ; $$\dot V_{{\text{O}}_{{\text{2max}}} }$$ ; Exercise metabolism ; Trained athletes ; Gas exchange
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Previous work has shown that when $$\dot V_{{\text{O}}_{\text{2}} }$$ kinetics are compared for endurance trained athletes and untrained subjects, the highly trained athletes have a faster response time. However, it remains to be determined whether the more rapid adjustment of $$\dot V_{{\text{O}}_{\text{2}} }$$ toward steady state in athletes is due to $$\dot V_{{\text{O}}_{{\text{2max}}} }$$ differences or training adaptation alone. One approach to this problem is to study the time course of $$\dot V_{{\text{O}}_{\text{2}} }$$ kinetics at the onset of work in athletes who differ in $$\dot V_{{\text{O}}_{{\text{2max}}} }$$ but have similar training habits. Therefore, the purpose of these experiments was to compare the time course of $$\dot V_{{\text{O}}_{\text{2}} }$$ kinetics at the onset of exercise in athletes with similar training routines but who differ in $$\dot V_{{\text{O}}_{{\text{2max}}} }$$ . Ten subjects ( $$\dot V_{{\text{O}}_{{\text{2max}}} }$$ range 50–70 ml · kg−1 · min−1) performed 6-minutes of cycle ergometer exercise at ∼50% $$\dot V_{{\text{O}}_{{\text{2max}}} }$$ . Ventilation and gas exchange were monitored by open circuit techniques. The data were modeled with a single component exponential function incorporating a time delay, (T D ); $$\Delta \dot V_{{\text{O}}_{{\text{2}}f} } = \Delta \dot V_{{\text{O}}_{2ss} } {\text{ (1}} - e^{ - t - T_D /_{\tau )} }$$ , where Τ is the time constant $$\Delta \dot V_{{\text{O}}_{{\text{2}}f} }$$ is the increase in $$\dot V_{{\text{O}}_{\text{2}} }$$ at time t and $$\Delta \dot V_{{\text{O}}_{{\text{2ss}}} }$$ is the steady-rate increment above resting $$\dot V_{{\text{O}}_{\text{2}} }$$ . Kinetic analysis revealed a range of $$\dot V_{{\text{O}}_{\text{2}} }$$ half times from 21.6 to 36.0 s across subjects with a correlation coefficient of r=−0.80 (p〈0.05) between $$\dot V_{{\text{O}}_{{\text{2max}}} }$$ and $$\dot V_{{\text{O}}_{\text{2}} }$$ half time. These data suggest that in highly trained indicivuals with similar training habits, those with a higher $$\dot V_{{\text{O}}_{{\text{2max}}} }$$ achieve a more rapid $$\dot V_{{\text{O}}_{\text{2}} }$$ adjustment at the onset of work.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 74 (1996), S. 391-396 
    ISSN: 1439-6327
    Keywords: Key words β(2)-Adrenoceptor agonist ; Skeletal muscle ; Fiber type ; Myosin heavy chain isoforms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  This study examined the effects of 6 weeks of treatment with the β(2)-adrenoceptor agonist, clenbuterol, on the soleus muscle of adult female Sprague-Dawley rats. Animals (4 months old) were divided into two groups: clenbuterol treated (CL, n=7) (2 mg·kg–1 body mass injected subcutaneously every other day), and control (CON, n=7) (injected with isotonic saline). Post-treatment body weights were ≈5% greater in the CL group compared to CON (P〈0.05). Polyacrylamide gel electrophoresis (SDS-PAGE) of soleus myofibrillar protein indicated a clenbuterol-induced decrease (P〈0.05) in the relative percentage of type I myosin heavy chain (MHC) with a concomitant increase (P〈0.05) in type IIdx MHC, while the proportion of type IIa MHC was unaffected. ATPase fiber typing revealed increases (P〈0.05) in the proportion of type II fibers expressed both as a percentage of total fiber number and total cross-sectional area (CSA). Finally, mean type II fiber CSA was ≈25% greater (P〈0.05) in the CL groups as compared to the CON group. These data indicate that clenbuterol treatment results in alterations in the MHC phenotype and an increased proportion of type II fiber CSA in the soleus of adult rats. These observations were due to an increase in the total number of type II fibers, as well as hypertrophy of these fibers. Thus, the relative increase in the number of histochemically determined type II fibers and the emergence of the normally unexpressed type IIdx MHC isoform in the soleus suggest a clenbuterol-induced transition of muscle fiber phenotype as well as selective hypertrophy of the type II fibers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...