Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 76 (1989), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Enzymes of the β-oxidation pathway in rice (Oryza sativa L., cv. Arborio) coleoptiles were investigated. The coleoptiles contain acyl-CoA oxidase (EC 1.3.99.3), 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35), enoyl-CoA hydratase (EC 4.2.1.17) and thiolase (EC 2.3.1.9). Analysis of coleoptile homogenates by sucrose density fractionation showed a preferential distribution of these enzymes in the unspecialized peroxisomes. The enzymatic activity found in the mitochondrial fraction was due to peroxisomal contamination since electron micrographs show the peroxisomes to be intact and pure whereas the mitochondrial fraction was contaminated by other organelles. It appears that the β-oxidation pathway is localized in the unspecialized peroxisomes of rice coleoptiles, extending the number of plant species in which such a localization has been observed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 109 (2000), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effects of norflurazon (NF) and amitrole (AM), two bleaching herbicides which inhibit carotenogenesis, were compared in leaves of 7-day-old barley (Hordeum vulgare L. cv Express) plants grown in damaging light. The herbicide effects were analysed with respect to chloroplast organization, photosynthetic functionality and nuclear photodependent expression of the Lhcb1 gene, which codes for the Lhcb1 light-harvesting chlorophyll a/b binding protein of photosystem II. Both herbicides caused dramatic photooxidation of organelles, which were photosynthetically unfunctional. Plastids of NF-treated plants lacked thylakoids and pigments. Plastids of AM-treated plants had some strikingly altered membranes and contained only very small quantities of chlorophylls. Despite the presence of severely photodamaged plastids, cells of AM-treated leaves contained high levels of Lhcb1 transcript. This transcript, on the contrary, was completely absent in the cells of NF-treated plants. These findings suggest that in order to block expression of nuclear genes coding for plastid-resident proteins, photodamage leading to the complete dismantling of thylakoids and to the total absence of any form of photosynthetic pigment is required.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 96 (1996), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The assimilatory activity of cotyledons can play an essential role in the survival of seedlings with a slow and delayed development of primary leaves. Changes in the photosynthetic activity of the cotyledon, from the onset of greening through senescence, were studied in two such plants, carob and sunflower, in order to determine its efficiency and duration, also in connection with the achievement of assimilatory autonomy by the plantlet. Chlorophyll analyses showed that the cotyledon's chloroplasts reached maximal greening in plantlets with a pair of expanded leaves. In contrast, the cotyledon's photosynthetic activity, measured as the rate of oxygen release, started to decrease early, before expansion of primary leaves. The decrease was due to the inactivation of a number of photosystem II (PSII) units, as revealed by immunodetection of breackdown products of the reaction centre's D1 and D2 thylakoid proteins. No signals of PSII alteration were noticed in the primary leaf chloroplasts that differentiated under the same environmental conditions. The damage to the cotyledon PSII, occurring in a non-photoinhibitory situation, might be due to a slower rate of turnover of D1 polypeptide than in the leaf thylakoids. The differential turnover of this protein in cotyledons and in leaves might represent an organ-specific regulation of the photosynthetic activity. The peculiarity of the cotyledon thylakoids make these organs useful objects for studying the metabolic cycle of both D1 and D2 proteins in vivo, under non-photoinhibiting conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 3-Amino- 1,2,4-triazole (amitrole) provided to germinating barley at 20°C in the light led to bleached seedling leaves and photodynamic destruction of chloroplast structure, whereas normal greening and chloroplast ultrastructure was obtained when the seedlings developed in the presence of amitrole in the light at 30°C. Mass spectrometric analysis of the extractable herbicide demonstrated the same content of amitrole in leaves developed at 20 and 30°C. A very similar temperature-sensitive syndrome is characteristic for the nuclear gene mutant ligrina-o34 in barley. Amitrole and the mutation were shown to inhibit the cyclization of lycopene, leading to severe deficiencies in β-carotene and its xanthophyll derivative lutein. Besides accumulation of lycopene, also its precursors phytoene, phytofluene and ξ-carotene accumulated. Inhibition of carotenoid biosynthesis by amitrole and the mutation at 20°C in the light led to a strong reduction of both transcript and protein levels for chloroplastic glutamine synthetase (GS2) while transcript amount and protein of the cytosolic isoenzyme (GS1) were unaffected. At 30°C increased levels of mRNA for the chloroplastic isoform GS2 were observed in wild type, mutant and amitrole-treated seedlings, but protein levels remained unchanged. Turnover rates of the GS2 protein were the same at 20 and 30°C. This extensive translational control of chloroplastic GS2 synthesis was also observed in a heat shock experiment, which revealed transiently increased mRNA levels for chloroplastic GS2 but unchanged protein levels.Permissive synthesis of β-carotene and chloroplastic glutamine synthetase (GS2) at 30°C in the presence of amitrole or the tigrina-o34 mutation might be due to two alternative pathways of ionone ring formation using either lycopene or neurosporene as substrates for cyclization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effects of impaired carotenogenesis on plastid membrane organization, functionality and stability were studied in etiolated barley plants grown at 20 and 30°C. The plants were treated with norflurazon or amitrole, two herbicides affecting phytoene desaturation and lycopene cyclization, respectively. At 20°C, the amitrole-treated etioplasts, which accumulated lycopene in their inner membranes, exhibited disorganized prolamellar bodies, containing a prevalent form of non-phototransformable protochlorophyllide (Pchlide). They also showed a certain difficulty in reducing the phototransformable pigment to chlorophyllide when exposed to light, and were unable to reform the active ternary complex [protochlorophyllide–oxidoreductase (POR)–Pchlide–NADPH] when placed back in darkness. No ultrastructural alterations were found in norflurazon-treated etioplasts, with carotenogenesis inhibited at the phytoene desaturation step. In these latter organelles, Pchlide, whose forms were comparable with those of the control etioplasts, was photoreduced quickly after illumination and the ternary complex was reformed during a subsequent dark period. Thus, the impaired carotenogenesis leading to the accumulation of lycopene showed greater interference with the etioplast membrane arrangement and functionality than did the earlier interruption of the biosynthetic pathway at the phytoene level. This might be due to the different interactions of the distinct carotenoid precursors with other membrane components. However, in etioplasts of norflurazon-treated plants, a rise in growth temperature caused a partial demolition of prolamellar bodies, showing a lowered thermostability of the carotenoid-deficient membranes. This latter effect strengthens the concept that a correct and complete carotenogenesis pathway, leading to the synthesis of polar carotenoids (i.e. xanthophylls), is required for the maintenance of stable plastid membranes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2048
    Keywords: Key words:Allium (root development) ; Ascorbate ; Cell division ; Cell expansion ; Hydroxyproline-containing protein ; Root development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Post-translational hydroxylation of peptide-bound proline residues, catalyzed by peptidyl-prolyl-4 hydroxylase (EC 1.14.11.2) using ascorbate as co-substrate, is a key event in the maturation of a number of cell wall-associated hydroxyproline-rich glycoproteins (HRGPs), including extensins and arabinogalactan-proteins, which are involved in the processes of wall stiffening, signalling and cell proliferation. Allium cepa L. roots treated with 3,4-DL-dehydroproline (DP), a specific inhibitor of peptidyl-prolyl hydroxylase, showed a 56% decrease in the hydroxyproline content of HRGP. Administration of DP strongly affected the organization of specialized zones of root development, with a marked reduction of the post-mitotic isodiametric growth zone, early extension of cells leaving the meristematic zone and a huge increase in cell size. Electron-microscopy analysis showed dramatic alterations both to the organization of newly formed cell walls and to the adhesion of the plasma membranes to the cell walls. Moreover, DP administration inhibited cell cycle progression. Root tips grown in the presence of DP also showed an increase both in ascorbate content (+53%) and ascorbate-specific peroxidase activity in the cytosol (+72%), and a decrease in extracellular “secretory” peroxidase activity (−73%). The possible interaction between HRGPs and the ascorbate system in the regulation of both cell division and extension is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2048
    Keywords: Aquatic angiosperm (photosynthesis) ; Bicarbonate utilization ; Egeria (photosynthesis, ultrastructure) ; Photosynthesis (leaf, stem)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthetic mechanisms have been compared in leaves and, separately, in stems of Egeria densa Planch. In order to correlate the structural and functional characteristics of the two organs (1) the ultrastructural features of leaves and stems have been studied and (2) their photosynthetic activity has been evaluated by measuring in vivo both oxygen evolution and the kinetics of chlorophyll fluorescence. The results confirm the aquatic behaviour of the leaf which is able to utilize inorganic C supplied both as CO2 and HCO 3 − . In this respect, the different wall organization found in the two cell layers of the leaf is particularly interesting, since it could be related to the known polar mechanism of inorganic-C uptake. The stem, by contrast, behaves rather as an aerial organ, needing very high CO2 concentrations in the aquatic environment in order to carry out photosynthesis. In the stem, the aerenchyma plays a role in supplying the green cells with gaseous respiratory CO2, thus facilitating the photosynthetic activity of the submerged stems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Planta 170 (1987), S. 300-307 
    ISSN: 1432-2048
    Keywords: Chloroembryophyte ; Chloroplast (differential development) ; Citrus ; Embryo (chloroplasts) ; Seed germination ; Thylakoid (polypeptides)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Clementine (Citrus nobilisxCitrus aurantium amara pumila) is a chloroembryophyte with green quiescent embryos and hypogeal germination. The cotyledonal chloroplasts have been studied during germination in the dark and under two different irradiances 120 and 240 μmol·m-2·s-1 throughout a period of three weeks. The plastids of the outer adaxial and inner regions develop differently. In the light, the former differentiate a photosynthetically active thylakoid system with an ultrastructural organization and a polypeptide composition resembling that of leaf chloroplasts. The “inner” chloroplasts maintain an organization reminiscent of chloroplasts of the quiescent embryo and never get beyond the photosynthesis/respiration compensation point; their differentiation pattern appears essentially the same under the two different irradiances. These observations and the germination in the dark indicate that the above differentiation is not strictly photodependent. The greening ability of the cotyledons provides, on occasion, an additional photosynthetic supply to this plant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2048
    Keywords: Abscission (fruit) ; Cellulase ; Fruit abscission ; Polygalacturonase ; Prunus (abscission)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The physiological drop of immature fruits was studied in relation to the activation of the abscission zone located between the fruit and the receptacle. Light- and electron-microscopy observations demonstrated that this zone consisted of two types of parenchymatous cells: in the distal region, closer to the fruit, were groups of small thick-walled cells with few intercellular spaces; in the proximal region, closer to the pedicel, the stillgrouped cells were larger, polyphenolic-rich, and thick-walled but with many wide intercellular spaces. Separation of the fruit occurred by dissolution of the middle lamella of the cells of this zone followed by an increase in the size of the intercellular spaces. Lysis of the middle lamella began at the corners of the cells and spread from there across the entire wall surface. Structural changes were paralleled by an increase in soluble proteins, endo-cellulase and exo-polygalacturonase activity. Isoelectric focusing indicated that both enzymes were present as isoenzymes whose patterns were affected by embryoctomy and 2-chloroethylphosphonic acid treatments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Archives of environmental contamination and toxicology 25 (1993), S. 244-249 
    ISSN: 1432-0703
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Notes: Abstract The growth of the whole plant and the chlorophyll content, oxygen evolution, and chloroplast ultrastructure of leaf tissues have been studied in maize plants grown on a culture medium either without cadmium (Cd) or supplied with increasing concentrations of the metal. The plants treated with high Cd concentrations showed symptoms of heavy metal toxicity, such as length reduction of both roots and shoots, leaf bleaching, ultrastructural alterations of chloroplasts and lowering of photosynthetic activity. Some symptoms appeared at 100 μM Cd, but the strong toxic effects of the metal were found only at 250 μM Cd.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...