Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Inorganic chemistry 32 (1993), S. 4730-4736 
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 115 (1993), S. 2531-2532 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Brain topography 5 (1993), S. 215-228 
    ISSN: 1573-6792
    Keywords: Intraoperative ECoG ; Focal interictal activity ; Focus localization ; Spatio-temporal analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary An innovative method for on-line processing of array ECoG data, the Spatio-Temporal Laplacian, intended for intraoperative epileptic focus localization is presented. This method simultaneously involves the spatial and temporal characteristics of the potential field manifestations peculiar to focal interictal events. A 3-Dimensional (x, y and t) sample space is used to explain and apply the Spatio-Temporal Laplacian (STL) transformation. In particular, a focal interictal event is detected through the coincident spatial and temporal sharpness that it introduces in this sample space. Preliminary results from two subjects are presented and compared with standard bipolar derivation signals, traditionally used in the focus localization task.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 76 (1987), S. 3-14 
    ISSN: 1573-4919
    Keywords: glycolysis ; enzymes ; cytomatrix ; interactions ; compartmentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Summary A survey of the existing data on the interactions of glycolytic enzymes with the cellular structure in mammalian tissues has substantiated the occurrence of an extensive degree of such associations in all tissues and during all stages of development. Furthermore, a considerable specificity was evident between the individual multiple forms of the enzymes in relation to these associations. In reviewing these data, a model has been developed which proposes that the glycolytic sequence is best described as consisting of a number of segments in vivo, each segment formed by a cluster of isozymes, many of which can interact with the actin containing filaments of the cytomatrix. The novel features of this segmentation and compartmentation have been described, and evidence has been provided that these phenomena collectively play a key role in meeting the different types of energy requirement in the cytoplasm of divergent cell types, with the wide selection of isozymes in this system offering the potential for increased flexibility and control in this important area of metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 32-44 
    ISSN: 0006-3592
    Keywords: insect cells ; baculovirus expression vector system ; multiplicity of infection ; time of infection ; substrate limitation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The inability to infect insect cell cultures at the highest achievable cell densities has imposed major limitations to both the fundamental understanding of the Baculovirus Expression Vector System (BEVS) as well as full exploitation of its potential productive capacity for recombinant (β-galAcNPV) products. The current literature does not characterize and identify the exact nature of the observed limitations, which therefore has become the major objective and contribution of the following study. Critical densities for infection of Spodoptera frugiperda (Sf9) cells with nuclear polyhedrosis virus expressing β-galactosidase (Autographa californica) grown in media both containing fetal calf serum (FCS) and free of serum were found to be at 2 × 106 and 5 × 106 cells/ml respectively. Medium exchange was found to completely reverse the effect if renewed up to 24 hours post-infection (HPI). The inevitable arrest of uninfected cell growth and decreased production of recombinant products at high cell densities of infection were both correlated to nutrient depletion. Cystine was found to be depleted in uninfected insect cell cultures at the onset of the stationary phase and in serum-free insect cell cultures infected with baculovirus above a cell density of 5 × 106 cells/ml. Neither glucose depletion nor accumulation of possible inhibitory metabolites such as alanine, ammonia, or lactate could be correlated to growth arrest or decreased recombinant product yields. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 32-44, 1997.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 178-188 
    ISSN: 0006-3592
    Keywords: fed-batch culture ; response surface model ; optimisation ; β-galactosidase ; Sf9 cells ; baculovirus expression vector system ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fed-batch culture can offer significant improvement in recombinant protein production compared to batch culture in the baculovirus expression vector system (BEVS), as shown by Nguyen et al. (1993) and Bedard et al. (1994) among others. However, a thorough analysis of fed-batch culture to determine its limits in improving recombinant protein production over batch culture has yet to be performed. In this work, this issue is addressed by the optimisation of single-addition fed-batch culture. This type of fed-batch culture involves the manual addition of a multi-component nutrient feed to batch culture before infection with the baculovirus. The nutrient feed consists of yeastolate ultrafiltrate, lipids, amino acids, vitamins, trace elements, and glucose, which were added to batch cultures of Spodoptera frugiperda (Sf9) cells before infection with a recombinant Autographa californica nuclear polyhedrosis virus (AcNPV) expressing β-galactosidase (β-Gal). The fed-batch production of β-Gal was optimised using response surface methods (RSM). The optimisation was performed in two stages, starting with a screening procedure to determine the most important variables and ending with a central-composite experiment to obtain a response surface model of volumetric β-Gal production. The predicted optimum volumetric yield of β-Gal in fed-batch culture was 2.4-fold that of the best yields in batch culture. This result was confirmed by a statistical analysis of the best fed-batch and batch data (with average β-Gal yields of 1.2 and 0.5 g/L, respectively) obtained from this laboratory. The response surface model generated can be used to design a more economical fed-batch operation, in which nutrient feed volumes are minimised while maintaining acceptable improvements in β-Gal yield. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59: 178-188, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 710-719 
    ISSN: 0006-3592
    Keywords: insect cells ; baculovirus ; suspension culture ; multiplicity of infection ; dynamic model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical model has been developed that predicts the cell population dynamics and production of recombinant protein and infective extracellular virus progeny by insect cells after infection with baculovirus in batch suspension culture. Infection in the model is based on the rate of virus attachment to suspended insect cells under culture conditions. The model links the events following infection with the sequence of gene expression in the baculovirus replicative cycle. Substrate depletion is used to account for the decrease in product yield observed when infecting at high cell densities. Model parameters were determined in shaker flasks for two media: serum-supplemented IPL-41 medium and serum free Sf900II medium. There was good agreement between model predictions and the results from an independent series of experiments performed to validate the mode. The model predicted: (1) the optimal time of infection at high multiplicity of infection: (2) the timing and magnitude of recombinant protein production in a 2-L bioreactor; and (3) the timing and magnitude of recombinant protein production at multiplicities of infection from 0.01 to 100 plaque-forming units per cell. Through its ability to predict optimal infection strategies in batch suspension culture, the model has use in the design and optimization of large-scale systems for the production of recombinant products using the baculovirus expression vector system. © 1994 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 659-666 
    ISSN: 0006-3592
    Keywords: suspension culture ; insect cells ; baculovirus ; multiplicity of infection ; time of infection ; model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In vitro infection of insect cells with baculoviruses is increasingly considered a viable means for the production of biopesticides, recombinant veterinary vaccines, and other recombinant products. Batch fermentation processes traditionally employ intermediate to high multiplicities of infection necessitating two parallel scale-up processes - one for cells and one for virus. In this study, we consider the use of multiplicities of infection as low as 0.0001 plaque-forming units per cell, a virus level low enough to enable infection of even large reactors (e.g., 10 m3) directly from a frozen stock. Using low multiplicities in the Sf9/β-gal-AcNPV system, recombinant protein titers comparable with the maximum titer observed in high multiplicity infections were achieved. Cultures yielding the maximum titer were characterized by reaching a maximum cell density between 3 and 4 × 109 cell L-1. This optimal cell yield did not depend on the multiplicity of infection, supporting the existing view that batch cultures are limited by availability of substrate. Up to a certain cell density, product titer will increase almost linearly with availability of biocatalyst, that is, cells. Beyond this point any further cell formation comes at the expense of final product titer. Low multiplicity infections were found not to cause any significant dispersion of the protein production process. Hence, product stability is not a major issue of concern using low multiplicities of infection. The sensitivity to initial conditions and disturbances, however, remains an issue of concern for the commercial use of low multiplicity infections. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 372-379 
    ISSN: 0006-3592
    Keywords: cell cycle model ; cell size variation ; lag phenomenon ; cell number ; biomass dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The use of cell numbers rather than mass to quantify the size of the biotic phase in animal cell cultures causes several problems. First, the cell size varies with growth conditions, thus yields expressed in terms of cell numbers cannot be used in the normal mass balance sense. Second, experience from microbial systems shows that cell number dynamics lag behind biomass dynamics. This work demonstrates that this lag phenomenon also occurs in animal cell culture. Both the lag phenomenon and the variation in cell size are explained using a simple model of the cell cycle. The basis for the model is that onset of DNA synthesis requires accumulation of G1 cyclins to a prescribed level. This requirement is translated into a requirement for a cell to reach a critical size before commencement of DNA synthesis. A slower growing cell will spend more time in G1 before reaching the critical mass. In contrast, the period between onset of DNA synthesis and mitosis, τB, is fixed. The two parameters in the model, the critical size and τB, were determined from eight steady-state measurements of mean cell size in a continuous hybridoma culture. Using these parameters, it was possible to predict with reasonable accuracy the transient behavior in a separate shift-up culture, i.e., a culture where cells were transferred from a lean environment to a rich environment. The implications for analyzing experimental data for animal cell culture are discussed. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 372-379, 1997.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...