Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Source
Years
Language
  • 1
    Publication Date: 2022-12-08
    Description: The combination of Monte Carlo methods and deep learning has recently led to efficient algorithms for solving partial differential equations (PDEs) in high dimensions. Related learning problems are often stated as variational formulations based on associated stochastic differential equations (SDEs), which allow the minimization of corresponding losses using gradient-based optimization methods. In respective numerical implementations it is therefore crucial to rely on adequate gradient estimators that exhibit low variance in order to reach convergence accurately and swiftly. In this article, we rigorously investigate corresponding numerical aspects that appear in the context of linear Kolmogorov PDEs. In particular, we systematically compare existing deep learning approaches and provide theoretical explanations for their performances. Subsequently, we suggest novel methods that can be shown to be more robust both theoretically and numerically, leading to substantial performance improvements.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-06
    Description: Solving high-dimensional partial differential equations is a recurrent challenge in economics, science and engineering. In recent years, a great number of computational approaches have been developed, most of them relying on a combination of Monte Carlo sampling and deep learning based approximation. For elliptic and parabolic problems, existing methods can broadly be classified into those resting on reformulations in terms of backward stochastic differential equations (BSDEs) and those aiming to minimize a regression-type L2-error (physics-informed neural networks, PINNs). In this paper, we review the literature and suggest a methodology based on the novel diffusion loss that interpolates between BSDEs and PINNs. Our contribution opens the door towards a unified understanding of numerical approaches for high-dimensional PDEs, as well as for implementations that combine the strengths of BSDEs and PINNs. The diffusion loss furthermore bears close similarities to (least squares) temporal difference objectives found in reinforcement learning. We also discuss eigenvalue problems and perform extensive numerical studies, including calculations of the ground state for nonlinear Schr ¨odinger operators and committor functions relevant in molecular dynamics.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-06
    Description: In this article, we propose a deep learning-based algorithm for the classification of crop types from Sentinel-1 and Sentinel-2 time series data which is based on the celebrated transformer architecture. Crucially, we enable our algorithm to do early classification, i.e., predict crop types at arbitrary time points early in the year with a single trained model (progressive intra-season classification). Such early season predictions are of practical relevance for instance for yield forecasts or the modeling of agricultural water balances, therefore being important for the public as well as the private sector. Furthermore, we improve the mechanism of combining different data sources for the prediction task, allowing for both optical and radar data as inputs (multi-modal data fusion) without the need for temporal interpolation. We can demonstrate the effectiveness of our approach on an extensive data set from three federal states of Germany reaching an average F1 score of 0.92 using data of a complete growing season to predict the eight most important crop types and an F1 score above 0.8 when doing early classification at least one month before harvest time. In carefully chosen experiments, we can show that our model generalizes well in time and space.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-06
    Description: The optical inspection of the surfaces of diode lasers, especially the p-sides and facets, is an essential part of the quality control in the laser fabrication procedure. With reliable, fast, and flexible optical inspection processes, it is possible to identify and eliminate defects, accelerate device selection, reduce production costs, and shorten the cycle time for product development. Due to a vast range of rapidly changing designs, structures, and coatings, however, it is impossible to realize a practical inspection with conventional software. In this work, we therefore suggest a deep learning based defect detection algorithm that builds on a Faster Regional Convolutional Neural Network (Faster R-CNN) as a core component. While for related, more general object detection problems, the application of such models is straightforward, it turns out that our task exhibits some additional challenges. On the one hand, a sophisticated pre- and postprocessing of the data has to be deployed to make the application of the deep learning model feasible. On the other hand, we find that creating labeled training data is not a trivial task in our scenario, and one has to be extra careful with model evaluation. We can demonstrate in multiple empirical assessments that our algorithm can detect defects in diode lasers accurately and reliably in most cases. We analyze the results of our production-ready pipeline in detail, discuss its limitations and provide some proposals for further improvements.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-02
    Description: Sampling rare events in metastable dynamical systems is often a computationally expensive task and one needs to resort to enhanced sampling methods such as importance sampling. Since we can formulate the problem of finding optimal importance sampling controls as a stochastic optimization problem, this then brings additional numerical challenges and the convergence of corresponding algorithms might as well suffer from metastabilty. In this article we address this issue by combining systematic control approaches with the heuristic adaptive metadynamics method. Crucially, we approximate the importance sampling control by a neural network, which makes the algorithm in principle feasible for high dimensional applications. We can numerically demonstrate in relevant metastable problems that our algorithm is more effective than previous attempts and that only the combination of the two approaches leads to a satisfying convergence and therefore to an efficient sampling in certain metastable settings.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-11-06
    Description: The article surveys and extends variational formulations of the thermodynamic free energy and discusses their information-theoretic content from the perspective of mathematical statistics. We revisit the well-known Jarzynski equality for nonequilibrium free energy sampling within the framework of importance sampling and Girsanov change-of-measure transformations. The implications of the different variational formulations for designing efficient stochastic optimization and nonequilibrium simulation algorithms for computing free energies are discussed and illustrated.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-06
    Description: The recent advances in machine learning in various fields of applications can be largely attributed to the rise of deep learning (DL) methods and architectures. Despite being a key technology behind autonomous cars, image processing, speech recognition, etc., a notorious problem remains the lack of theoretical understanding of DL and related interpretability and (adversarial) robustness issues. Understanding the specifics of DL, as compared to, say, other forms of nonlinear regression methods or statistical learning, is interesting from a mathematical perspective, but at the same time it is of crucial importance in practice: treating neural networks as mere black boxes might be sufficient in certain cases, but many applications require waterproof performance guarantees and a deeper understanding of what could go wrong and why it could go wrong. It is probably fair to say that, despite being mathematically well founded as a method to approximate complicated functions, DL is mostly still more like modern alchemy that is firmly in the hands of engineers and computer scientists. Nevertheless, it is evident that certain specifics of DL that could explain its success in applications demands systematic mathematical approaches. In this work, we review robustness issues of DL and particularly bridge concerns and attempts from approximation theory to statistical learning theory. Further, we review Bayesian Deep Learning as a means for uncertainty quantification and rigorous explainability.
    Language: English
    Type: bookpart , doc-type:bookPart
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-06
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-07-17
    Description: Importance sampling is a popular variance reduction method for Monte Carlo estimation, where an evident question is how to design good proposal distributions. While in most cases optimal (zero-variance) estimators are theoretically possible, in practice only suboptimal proposal distributions are available and it can often be observed numerically that those can reduce statistical performance significantly, leading to large relative errors and therefore counteracting the original intention. Previous analysis on importance sampling has often focused on asymptotic arguments that work well in a large deviations regime. In this article, we provide lower and upper bounds on the relative error in a nonasymptotic setting. They depend on the deviation of the actual proposal from optimality, and we thus identify potential robustness issues that importance sampling may have, especially in high dimensions. We particularly focus on path sampling problems for diffusion processes with nonvanishing noise, for which generating good proposals comes with additional technical challenges. We provide numerous numerical examples that support our findings and demonstrate the applicability of the derived bounds.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-08-16
    Description: The task of sampling from a probability density can be approached as transporting a tractable density function to the target, known as dynamical measure transport. In this work, we tackle it through a principled unified framework using deterministic or stochastic evolutions described by partial differential equations (PDEs). This framework incorporates prior trajectory-based sampling methods, such as diffusion models or Schrödinger bridges, without relying on the concept of time-reversals. Moreover, it allows us to propose novel numerical methods for solving the transport task and thus sampling from complicated targets without the need for the normalization constant or data samples. We employ physics-informed neural networks (PINNs) to approximate the respective PDE solutions, implying both conceptional and computational advantages. In particular, PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently, leading to significantly better mode coverage in the sampling task compared to alternative methods. Moreover, they can readily be fine-tuned with Gauss-Newton methods to achieve high accuracy in sampling.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...