Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 356-365 
    ISSN: 0006-3592
    Keywords: Escherichia coli HB101[pGEc47] ; defined medium ; batch and continuous cultivation ; transient experiments ; bioconversion ; octanoic acid ; linear inhibition kinetics ; model simulation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: E. coli HB101[pGEc47], which is able to convert octane to octanoate, but cannot oxidize octanoate further, was grown on defined medium with glucose as carbon source in batch and continuous culture. The biomass yield on glucose decreased from 0.32 ± 0.02 g g-1 in aqueous cultivations to 0.25 ± 0.02 g g-1 in the presence of octane. Maximal octanoate productivities of 0.6 g L-1 h-1 were the same as found in cultivations on complex medium. The glucose-based carbon recovery in these experiments was 99 ± 4% (in extreme, between 90% and 105%). An increase of the octane feed from 1% to 2% (v/v) or more led to washout of cells. This effect was reversible when the octane feed was decreased to its initial value of 1%. Analysis of experimental data by model simulation strongly suggested that washout was due to inhibition by octanoate only. Pulses of octanoate to a continuous culture grown on aqueous media were applied to analyze the inhibition further. Inhibition by acetate was not significant, but its presence in the medium reflected a physiological state that made the cells more sensitive to octanoate inhibition. Model simulation with linear inhibition kinetics could perfectly predict glucose consumption and the resulting glucose concentration. The linear type of inhibition was confirmed by a variety of batch experiments in the presence of different concentrations of octanoate. The glucose-based specific growth rate, μ, decreased linearly with increasing concentrations of octanoate and became zero at a threshold concentration pmax of 5.25 ± 0.25 g L-1. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:356-365, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 92-100 
    ISSN: 0006-3592
    Keywords: E. coli HB101[pGEc47] ; defined medium ; medium development ; yield coefficients ; critical dilution rate ; batch and continuous cultivation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This paper shows that differences in growth behavior of Escherichia coli strain HB101 and strain HB101[pGEc47] can be related to yeast extract-enriched medium rather than plasmid properties. An optimal medium for growth of E. coli HB101[pGEc47] was designed based on the individual yield coefficients for specific medium components (NH4+ 6 g g-1, PO43- 14 g g-1, SO42- 50 g g-1). The yield coefficient for l-leucine depends on the glucose content of the medium (20 g g-1 for 3% glucose, 40 g g-1 for 1% glucose) and the yield coefficient for l-proline depends on the cultivation mode (20 g g-1 for batch cultivation, 44 g g-1 for continuous cultivation). Growth on defined medium after medium optimization is as rapid as on complex medium (0.42-0.45 h-1). The critical dilution rate (DR) in the defined medium above which undesired production of acetic acid occurs is in the range of 0.23-0.26 h-1. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:92-100, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...