Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0948-5023
    Keywords: Keywords Computer Simulations, QM/MM Potentials, Density Functional Theory, Molecular Dynamics, Liquid Water
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A hybrid NVE Molecular Dynamics simulation of liquid water is presented using a coupled Density Functional/Molecular Mechanics hamiltonian. The quantum subsystem is a single water molecule described by means of a triple-zeta quality basis set with polarization orbitals on oxygen and hydrogen atoms. Non-local exchange-correlation corrections are included self-consistently. The classical system is constituted by 128 classical TIP3P water molecules. Results are in reasonable agreement with experimental data and in particular a good description of the solute polarization is obtained. Large fluctuations of the instantaneous value of the dipole moment of the quantum molecule are predicted.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 5220-5227 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The reaction field of a water molecule in liquid water has been computed with the help of continuum, discrete-continuum, and discrete models, using density functional theory calculations. In the continuum model, the liquid is simply described by a polarizable dielectric medium. The solute is placed in a cavity defined by a scaled van der Waals surface. Two different sets of van der Waals radii have been used for the atomic spheres. The discrete-continuum model consists of a quantum molecule surrounded by four classical molecules, the resulting aggregate being embedded in a dielectric continuum. Finally, in the discrete model, a molecular dynamics simulation is carried out for a quantum molecule in a box containing 215 classical molecules with periodic boundary conditions. The reaction field and the induced dipole moment in the standard continuum model are substantially underestimated. However, the use of optimized van der Waals radii for the atomic spheres produces a notable improvement. The discrete-continuum and discrete models lead to close results that are in good agreement with experimental data and previous theoretical estimations. For instance, the induced dipole moment (0.80 and 0.82 D for discrete-continuum and discrete models, respectively) compares well with the experimental estimate (0.75 D) and with Car–Parrinello simulations (1.08 D). The reaction field potential is analyzed in terms of multipole moment contributions. The role of the first shell and bulk solvent are also examined. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 3798-3805 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2234
    Keywords: Key words:N-Methylazetidinone ; Molecular dynamics ; β-Lactam hydrolysis ; Solvent effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. In this article, we analyze the results of a molecular dynamics simulation in aqueous solution of the N-methylazetidinone molecule, often used to model β-lactam antibiotics. The radial distribution functions (RDFs) corresponding to the most interesting atoms, in terms of reactivity, are presented. We focus our study on the effect of a polar environment on the molecule. The solvent structure around the system is compared to the structure of β-lactam-water complexes, as obtained in a previous study of reaction mechanisms for the neutral and alkaline hydrolyses of N-methylazetidinone. Two types of complexes have been considered which are related to different hydrolysis mechanisms having similar energy barriers at the rate-limiting step of the reaction path. In the first type, the β-lactam-water interaction takes place through the oxygen carbonyl atom and there is agreement between the maxima of the RDFs obtained here and the ab initio structure of the complexes previously reported. In the second type, the interaction takes place through the nitrogen atom and we do not predict a coordination layer around the β-lactam nitrogen atom. The results suggest that in aqueous solution hydrolysis of the carbonyl group is the most probable starting point for the overall hydrolysis reaction. Some discussion on the use of cluster models to represent the solvent effect is included.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2234
    Keywords: Key words: Proton transfer – Serine – Continuum solvent model – Nonequilibrium effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. Serine amino acid in aqueous solution is theoretically studied at the B3PW91/6-31+G** level using a dielectric continuum solvent model. Neutral and zwitterionic structures in the gas phase and in solution are described and the proton-transfer mechanism is discussed. A neutral conformation in which the carboxyl hydrogen atom is already oriented toward the amino group seems to be the absolute energy minimum in the gas phase and the most stable neutral form in solution. The absolute energy minimum in solution is a zwitterionic form. The energy barrier for proton transfer is predicted to be very small, in particular when zero-point-energy contributions are added. Our calculations allow the dynamic aspects of the ionization mechanism to be discussed by incorporating nonequilibrium effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A parameterized self-consistent reaction field model allowing computation of the total free energy of hydration of organic molecules at the ab initio level is presented. The approach uses electrostatic plus polarization energies calculated with the help of a continuum model. The remaining solvation free energy terms are obtained by a simple formula based on atomic parameters and atomic accessible surface areas (ASAs), which are determined with the ASA analytical algorithm. Analytical derivatives of the atomic surfaces areas have been implemented. The atomic parameters have been obtained by a linear regression fit of the calculated and experimental free energies of solution in water for a set of 35 molecules, leading to a standard deviation of 0.75 kcal/mol. Effects of nonelectrostatic terms on solute geometries, association energies, and activation barriers are illustrated. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Physical Organic Chemistry 9 (1996), S. 119-127 
    ISSN: 0894-3230
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The conformational space of the 2-cyano-1,1-dihydroxyethane molecule was studied at the semi-empirical PM3 level and ab initio MP2/6-31G**//6-31G level in the gas phase and in a low-polarity medium. This system has been chosen as a model compound for 2-cyanocyclohexanone propylene and ethylene acetals. This has allowed the study of the role of polar groups on the relative conformation of two adjacent OH groups, which is of interest also in relation to the anomeric effect in carbohydrate chemistry. Solvent effects are taken into account using a continuum model with general cavity shapes.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...