Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 68 (1990), S. 5016-5027 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this paper fully time-dependent collisional-radiative (CR) calculations are used to study the highly dynamic nonequilibrium anode plasma in a magnetically insulated-diode experiment. The CR model for the C i–C iv atomic system is described in detail, including the radiative and collisional rates and the level structure of the system. The electron temperature is determined by comparing time-dependent line intensities for C ii and C iii ions to calculations of level-population ratios in which continuous particle injection from the anode surface into the plasma is taken into account. The electron temperature is approximately 7 eV. The time-dependent injected fluxes and the fluxes accelerated away from the plasma for C i, C ii, and C iii are determined by inverting the coupled CR rate equations. The calculated extracted flux near the end of the pulse is consistent with the measured carbon-ion current drawn from the plasma. Injection of excited particles is also investigated and is found to be important during the rise of the current pulse (≤50 ns). The importance of including multiple branching for ionization into excited final states is also shown. The time-dependent cooling rate due to inelastic electron-ion collisions and radiative processes is derived for general level-population distributions and is used to investigate the anode plasma. This work should also be relevant in the study of other pulsed-power nonequilibrium plasmas, such as recombining plasmas that have applications for UV and x-ray lasers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 758-763 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A possible source of electric field fluctuations in the anode plasma of a magnetically insulated ion diode which have been observed in recent experiments is discussed. It is suggested that these fluctuations are driven by the ion flow which destabilizes an electrostatic mode akin to two-stream instability. Evidence is presented for such a flow and its implications for the electric field polarization and magnitude are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 2895-2907 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Cyclotron modes of a non-neutral Mg ion plasma were studied in a long cylindrical Penning–Malmberg trap. Several modes with angular dependence exp(ilθ), l≥1, are observed near the cyclotron frequencies of the various Mg ions. The l=1 modes for the majority species are downshifted from the cyclotron frequencies, with downshifts as large as four times the diocotron frequency. These large shifts are quantitatively explained by a multispecies cold-plasma theory, including the dependence on the plasma size and composition. These dependencies allow the plasma size and composition to be obtained from the measured mode frequencies. In contrast, the l=1 downshifts for minority species are generally close to twice the diocotron frequency, and remain unexplained. Cyclotron heating of the plasma ions was also observed with a surprising effect of improving the plasma confinement. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe the investigations of the plasma behavior in three pulsed-power systems: a magnetically insulated ion diode, and plasma opening switch, and a gas-puffed Z pinch. Recently developed spectroscopic diagnostic techniques allow for measurements with relatively high spectral, temporal, and spatial resolutions. The particle velocity and density distributions within a few tens of microns from the dielectric-anode surface are observed using laser spectroscopy. Fluctuating electric fields in the plasma are inferred from anisotropic Stark broadening. For the plasma opening switch experiment, a novel gaseous plasma source was developed which is mounted inside the high-voltage inner conductor. The properties of this source, together with spectroscopic observations of the electron density and particle velocities of the injected plasma, are described. Emission line intensities during the switch operation are discussed. In the Z-pinch experiment, spectral emission-line profiles of various charge-state ions are studied during the implosion phase. Radial velocity distributions are observed from the line Doppler shifts and widths.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 68 (1997), S. 2367-2377 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe a new apparatus for magnetic confinement of a pure ion plasma, with laser diagnostics to measure test particle transport across the magnetic field. In addition to the axisymmetric trapping potential, rotating electrostatic wall perturbation is used to counteract the plasma loss processes, giving steady-state ion confinement for weeks. Electronic spin polarization of the ion ground states is used to label the test particles; this spin orientation is controlled by direct optical pumping. The laser-induced fluorescence (LIF) technique is used to nondestructively measure the ion velocity distribution; and an absolute calibration of the charge density is obtained from the LIF measurement of the plasma rotation velocity. Two new technological improvements compatible with ultrahigh vacuum systems have been used: a semirigid Teflon insulated coaxial cable has low microphonic noise, and an antireflective coating is used to reduce reflection of ultraviolet light inside the vacuum chamber. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...