Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 125 (1995), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The expression of all sequenced acetone and butanol formation genes was followed using mRNA analysis during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum. Differential induction or derepression of the bdhA, bdhB, and adc genes as well as the sol operon was observed during the pH-induced shift. The order of induction of the three different butanol dehydrogenase genes was found to be bdhA-sol operon-bdhB, offering an explanation for the physiological role of the respective enzymes. Peak mRNA synthesis of an autolysin and a heat shock gene at the onset of solventogenesis was detected in addition to the above-mentioned genes. None of the hitherto sequenced genes of butanologenic enzymes was found to be involved in butanol production during the Methyl viologen-induced shift, indicating the presence of yet unknown genes encoding alcohol and aldehyde dehydrogenases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 100 (1992), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The mutation of Clostridium acetobutylicum mutant AA2, defective in the formation of acetone and butanol, was shown to be caused by a single insertion of Tn916 close to the structural gene thrA, encoding the tRNAACGThr. The DNA region containing the thrA gene was cloned and sequenced. Start and end points of the transcript were determined by primer extension and S1-mapping analysis. The results obtained were identical to predictions derived from the DNA sequence by various RNA-analysing computer programs. The rarely used ACG codon seems to be confined to genes expressed at the end of the exponential growth phase or involved in uptake or turnover of minor C or N substrates. Evolutionary aspects of this codon selection and a possible translational regulation mechanism are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 57 (2001), S. 269-271 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The acute myeloid leukaemia 1 (AML1) protein belongs to the Runx family of transcription factors and is crucial for haematopoietic development. The genes encoding Runx1 and its associated factor CBFβ are the most frequent targets for chromosomal rearrangements in acute human leukaemias. In addition, point mutations of Runx1 in acute leukaemias and in the familial platelet disorder FPD/AML cluster within the evolutionary conserved runt domain that binds both DNA and CBFβ. Here, the crystallization of the Runx1 runt domain is reported. Crystals belong to space groups C2 and R32 and diffract to 1.7 and 2.0 Å resolution, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Blocking glycolytic breakdown of glucose by inactivation of phosphoglucose isomerase (Pgi) in Escherichia coli led to a greatly reduced maximum specific growth rate. Examination of the operational catabolic pathways and their flux ratios using [U-13C6]glucose-labeling experiments and metabolic flux ratio analysis provide evidence for the pentose phosphate (PP) pathway as the primary route of glucose catabolism in the knock-out mutant. The resulting extensive flux through the PP pathway disturbs apparently the reducing power balance, since overexpression of the recently identified soluble transhydrogenase UdhA improves significantly the growth rate of the Pgi mutant. The presented results provide first evidence that UdhA restores the cellular redox balance by catalyzing electron transfer from NADPH to NADH.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 226 (2003), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The metabolic impact of electron rerouting in the respiratory chain of Bacillus subtilis was quantitatively assessed during batch growth of quinol oxidase mutants by 13C-tracer experiments. While disruption of the low-coupling cytochrome bd oxidase was without any apparent phenotype, deletion of the high-coupling cytochrome aa3 oxidase caused a severe reduction of tricarboxylic acid cycle fluxes and increased overflow metabolism. Since the product-corrected biomass yields were identical in mutants and parent, the results show that efficient ATP generation is not overly important for exponential growth of B. subtilis in batch culture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 17 (1995), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract: The genus Clostridium, represented by Gram-positive, anaerobic, spore-forming bacteria, is well known for its clinical importance and considerable biotechnological potential. Recently, evidence for a functional role of the transcription factors σA, σE, σG, and σK in this genus was provided by cloning and sequencing these genes from C. acetobutylicum. In C. kluyveri, a partially sequenced open reading frame was found to encode the N terminus of the putative σ factor L with significant similarity to members of the σ54 family. The identification of sequences with high similarity to the BacillusσF (C. acetobutylicum), σH (several clostridial species), and σD (C. thermocellum)-controlled consensus promoters renders the existence of these transcription factors in clostridia very likely. These data are in agreement with information obtained by RNA transcript mapping (σA, σH), heterologous DNA hybridization (σD, σH), and immuno characterization of purified proteins (σA) from various clostridial species. Thus, the picture emerges that a fundamental similarity exists at the genetic level between the regulation of various cellular responses, in particular sporulation, in the genera Bacillus and Clostridium. The different induction patterns of sporulation in Bacillus spp. (nutrient starvation) and many clostridial species (cessation of growth or exposure to oxygen in the presence of excess nutrients) are most interestingly not reflected in the general regulatory features of this developmental process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 29 (2005), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In many organisms, metabolite interconversion at the phosphoenolpyruvate (PEP)–pyruvate–oxaloacetate node involves a structurally entangled set of reactions that interconnects the major pathways of carbon metabolism and thus, is responsible for the distribution of the carbon flux among catabolism, anabolism and energy supply of the cell. While sugar catabolism proceeds mainly via oxidative or non-oxidative decarboxylation of pyruvate to acetyl-CoA, anaplerosis and the initial steps of gluconeogenesis are accomplished by C3- (PEP- and/or pyruvate-) carboxylation and C4- (oxaloacetate- and/or malate-) decarboxylation, respectively. In contrast to the relatively uniform central metabolic pathways in bacteria, the set of enzymes at the PEP–pyruvate–oxaloacetate node represents a surprising diversity of reactions. Variable combinations are used in different bacteria and the question of the significance of all these reactions for growth and for biotechnological fermentation processes arises. This review summarizes what is known about the enzymes and the metabolic fluxes at the PEP–pyruvate–oxaloacetate node in bacteria, with a particular focus on the C3-carboxylation and C4-decarboxylation reactions in Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. We discuss the activities of the enzymes, their regulation and their specific contribution to growth under a given condition or to biotechnological metabolite production. The present knowledge unequivocally reveals the PEP–pyruvate–oxaloacetate nodes of bacteria to be a fascinating target of metabolic engineering in order to achieve optimized metabolite production.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract: The enzymes acetoacetate decarboxylase coenzyme A transferase catalyse acetone production from acetoacetyl-CoA in Clostridium acetobutylicum. The adc gene encoding the former enzyme is organized in a monocistronic operon, while the ctf genes form a common transcription unit with the gene (adhE) encoding a probable polyfunctional aldehyde/alcohol dehydrogenase. This genetic arrangement could reflect physiological requirements at the onset of solventogenesis. In addition to AdhE, two butanol dehydrogenase isozymes and a thiolase are involved in butanol synthesis. RNA analyses showed a sequential order of induction for the different butanol dehydrogenase genes, indicating an in vivo function of BdhI in low level butanol formation. The physiological roles of AdhE and BdhII most likely involve high level butanol formation, with AdhE being responsible for the onset of solventogenesis and BdhII ensuring continued butanol production. Addition of methyl viologen results in artifically induced butanol synthesis which seems to be mediated by a still unknown set of enzymes. Although the signal that triggers the shift to solventogenesis has not yet been elucidated, recent investigations suggest a possible function of DNA supercoiling as a transcriptional sensor of the respective environmental stimuli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...