Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Key words Spinal inhibition ; Interneurons ; Micturition ; Bladder-sphincter dyssynergia ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Micturition in the decerebrate cat is characterized by a coordinated bladder contraction and a simultaneous decrease in external urethral sphincter (EUS) efferent activity. Without the suppression of EUS activity, voiding is significantly impaired, resulting in a state sometimes referred to as bladder-sphincter dyssynergia. The aim of the present study was to determine whether glycinergic inhibition contributes to the suppression of EUS activity during micturition evoked by bladder distension or electrical stimulation of the pontine micturition center (PMC) in decerebrate cats. Using subconvulsive intravenous doses of strychnine (0.1–0.24 mg/kg), we examined changes in bladder and EUS electroneurographic (ENG) activity during micturition. Following subconvulsive doses of strychnine, tonic EUS ENG activity increased during bladder filling in five of six animals. In the presence of strychnine, it was possible to evoke reflex bladder contractions of similar duration and peak pressure to those observed before strychnine administration. However, there was an absence of suppression of EUS ENG activity during the bladder contractions in all the animals. To determine whether the changes in sphincter activity could be due to strychnine acting at glycine receptors on EUS motoneurons, sacral spinal tissue was processed for a structural protein (gephyrin) associated with the glycine receptor. Motoneurons in Onuf′s nucleus in S1 were identified using choline acetyltransferase immunohistochemistry and subsequently processed with a gephyrin monoclonal antibody. Abundant gephyrin labeling was evident throughout Onuf′s nucleus. Since Onuf′s nucleus is made up of EUS and other motoneuron populations, a sample of antidromically identified urethral and anal sphincter motoneurons were intracellularly labeled with tetramethylrhodamine dextran (TMR-D) and then processed with the gephyrin antibody. Using dual-beam confocal microscopy, gephyrin immunoreactivity was observed on the soma and proximal processes of individual EUS motoneurons in both male and female animals. It was concluded that a strychnine-sensitive mechanism contributes to the suppression of sphincter activity normally observed during voiding. Although glycinergic inhibition may affect several components of the circuitry responsible for micturition, it appears that the suppression of EUS motoneurons during micturition may be partly due to a direct glycinergic inhibition of the EUS motoneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Intrinsic membrane properties are important in the regulation of motoneuronal output during such behaviours as locomotion. A conductance through L-type calcium channels has been implicated as an essential component in the transduction of motoneuronal input to output during locomotion. Given the developmental changes in calcium currents occurring postnatally in some neurons, and the increasing interest in the study of spinal locomotor output in neonatal preparations, experiments were conducted to investigate the postnatal development of L-type calcium channels in mouse motoneurons. This was assessed both physiologically, using a chemically induced rhythmic motor output, and anatomically, using immunohistochemical methods. The electrophysiological data were obtained during rhythmic bursting produced by application of N-methyl-d-aspartate (NMDA) and strychnine to the isolated spinal cord at various postnatal ages. The L-type calcium channel blocker nifedipine has no effect on this ventral root bursting in postnatal day (P) P2–P5 animals, but reversibly reduced the amplitude and/or burst duration of this activity in animals greater than P7. The immunohistochemical evidence demonstrates a dramatic change in the cellular profile of both the α1C and α1D subunits of L-type calcium channels during postnatal development; the labelling of both subunits increases with age, approximating the adult pattern by P18. These results demonstrate that in the spinal cord, the L-type calcium channel profile develops both physiologically and anatomically in the early postnatal period. This development parallels the development of the mature functional behaviours of weight bearing and walking, and may be necessary for the production of complex motor behaviour in the mature mammal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...