Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 133 (1990), S. 329-347 
    ISSN: 1420-9136
    Keywords: Earthquake prediction ; long-range interaction of earthquakes ; real time test
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Result of the algorithm of earthquake prediction, published in 1982, is examined in this paper. The algorithm is based on the hypothesis of long-range interaction between strong and moderate earthquakes in a region. It has been applied to the prediction of earthquakes withM≥6.4 in Southern California for the time interval 1932–1979. The retrospective results were as follows: 9 out of 10 strong earthquakes were predicted with average spatial accuracy of 58 km and average delay time (the time interval between a strong earthquake and its best precursor) 9.4 years varying from 0.8 to 27.9 years. During the time interval following the period studied in that publication, namely in 1980–1988, four earthquakes occurred in the region which had a magnitude ofM≥6.4 at least in one of the catalogs: Caltech or NOAA. Three earthquakes—Coalinga of May, 1983, Chalfant Valley of July, 1985 and Superstition Hills of November, 1987—were successfully predicted by the published algorithm. The missed event is a couple of two Mammoth Lake earthquakes of May, 1980 which we consider as one event due to their time-space closeness. This event occurred near the northern boundary of the region, and it also would have been predicted if we had moved the northern boundary from 38°N to the 39°N; the precision of the prediction in this case would be 30 km. The average area declared by the algorithm as the area of increased probability of strong earthquake, e.g., the area within 111-km distance of all long-range aftershocks currently present on the map of the region during 1980–1988 is equal to 47% of the total area of the region if the latter is measured in accordance with the density distribution of earthquakes in California, approximated by the catalog of earthquakes withM≥5. In geometrical terms it is approximately equal to 17% of the total area. Thus the result of the real time test shows a 1.6 times increase of the occurrence ofC-events in the alarmed area relative to the normal rate of seismicity. Due to the small size of the sample, it is of course, beyond the statistically significant value. We adjust the parameters of the algorithm in accordance with the new material and publish them here for further real-time testing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The 3–D model of the Earth, as obtained with a brand new investigative technique, is discussed. However an international collaborative project, involving researchers from the whole world, has uncovered a severe systematic error in the new data acquisition system making the results of this new model highly questionable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 47 (2000), S. 91-115 
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract This paper estimates changes in thepotential damage of flood events caused by increasesof CO2 concentration in the atmosphere. It ispresented in two parts: 1. the modelling of floodfrequency and magnitude under global warming andassociated rainfall intensities and 2. the use ofgreenhouse flood data to assess changes in thevulnerability of flood prone urban areas, expressingthese in terms of direct losses.Three case studies were selected: theHawkesbury–Nepean corridor, the Queanbeyan and UpperParramatta Rivers. All three catchments are located insoutheastern Australia, near Sydney and Canberra.These were chosen because each had detailed buildingdata bases available and the localities are situatedon rivers that vary in catchment size andcharacteristics. All fall within a region that willexperience similar climate change under the availablegreenhouse scenarios. The GCMs' slab model scenariosof climate change in 2030 and 2070 will cause onlyminor changes to urban flood damage but the doubleCO2 scenarios estimated using the StochasticWeather Generator technique will lead to significantincreases in building damage.For all the case studies, the hydrological modellingindicates that there will be increases in themagnitude and frequency of flood events under thedouble CO2 conditions although these vary fromplace to place. However, the overall pattern of changeis that for the Upper Parramatta River the 1 in 100-year flood under currentconditions becomes the 1 in44-year event, the 1 in 35-year flood for theHawkesbury–Nepean and the 1 in 10 for Queanbeyan andCanberra. This indicates the importance of usingrainfall-runoff modelling in order to estimate changesin flood frequencies in catchments with differentphysical characteristics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A rainfall-runoff model (IHACRES) is applied on a daily timestep to a large area of the state of Victoria, Australia. Successful calibrations of this dynamic lumped parameter model were performed for 5 rivers contributing streamflow to the Ovens Basin, and for 9 rivers of the Goulburn Basin. This is the first application of the model on such a scale, involving two basins where the total drainage area of the catchments modelled is about 6,500 km2. The models were tested by simulation over the entire common period of observation for the 14 catchments under consideration. The results show that the models closely simulate the observed streamflow. The effect of historical climate variability on streamflow was investigated. The models were used for estimation of the potential impact of climatic change on water availability for irrigation for different climate scenarios developed in the Division of Atmospheric Research, CSIRO. This allows conditional estimates to be made of water supply in these basins for the periods 2030 and 2070 under current vegetation conditions. Projecting the future hydrologic regime in this region is extremely important, in particular for supporting irrigation management of the Basin. The problem of estimating the impact of climate change on the probability of extreme events of the hydrological regime was analysed. Flood frequency was found to increase for the scenarios providing the maximum amount of water; to 50% at 2030 and 100% at 2070. The probability of flood events for the ‘dry’ scenarios rapidly decreases for these dates. Drought frequency, as defined by a soil wetness index, increased 35% for the ‘dry’ scenario at 2030 and 80% for this scenario at 2070.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...