Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 41 (1995), S. 1070-1075 
    ISSN: 1432-1432
    Keywords: Gene evolution ; Seed storage proteins ; Desiccation ; Myxomycetes ; Protein domains
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The legumin- and vicilin-like seed storage globulins of spermatophytes are specifically accumulated during embryogenesis and seed development. Previous studies have shown that a precursor common to both legumin and vicilin genes might have evolved by duplication from a single-domain ancestral gene. We here report that amino acid sequences of legumin and vicilin domains share statistically significant similarity to the germination-specific germins of wheat as well as to the spherulation-specific spherulins of myxomycetes. This conclusion is further supported by the derived intron-exon structure of a spherulin gene. Spherulins are thought to be involved in tissue desiccation or hydration. It is suggested that the present-day seed globulins of spermatophytes have evolved from a group of ancient proteins functional in cellular desiccation/hydration processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1432
    Keywords: Gene evolution ; Seed protein genes ; Legumin ; Vicilin ; Gene family ; Sequence homology ; Intron/exon structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Legumin-like 11S and vicilin-like 7S globulins are the main storage proteins of most angiosperms and gymnosperms. The subunits of the hexameric legumin are synthesized as a precursor comprising a N-terminal acidic α- and a C-terminal basic β-chain. The trimeric vicilin molecule consists of subunits composed of two symmetrical N- and C-terminal structural domains. In a multiple alignment we have compared the N-terminal and C-terminal domains of 11 legumns and seven vicilins of several dicot, monocot, and gymnosperm species. The comparisons using all six possible pairwise combinations reveal that the N-terminal and C-terminal domains of both protein families are similar to each other. These results together with data on the distribution of variable and conserved regions, on the positions of susceptible sites for proteolytic attack, as well as on the published 7S protein tertiary structure suggest that both protein families share a common single-domain ancestor molecule and lead to the hypothesis that a triplication event has occurred during the evolution of a putative legumin/vicilin ancestor gene. Moreover, the comparison of the intron/exon pattern reveals that at least three out of five intron positions are precisely conserved between the genes of both protein families, further supporting the idea of a common evolutionary origin of recent legumin and vicilin encoding genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 31 (1996), S. 35-44 
    ISSN: 1573-5028
    Keywords: gene evolution ; seed proteins ; sucrose-binding protein ; cycades
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seed storage globulins of the 7S and 11S type are synthesized in the seeds of angiosperms and gymnosperms. We have isolated and characterized a vicilin-like gene expressed in the cycad Zamia furfuraceae. Sequence comparisons reveal clear similarities to a sucrose-binding protein isolated from soybean. We suggest the existence of a superfamily of related genes including both vicilin-like and legumin-like seed globulin genes as well as genes coding for spherulins, germins and sucrose-binding-proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...