Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 48 (1986), S. 1-2 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 48 (1986), S. 3-15 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Eruption columns can be divided into three regimes of physical behaviour. The basal gas thrust region is characterized by large velocities and decelerations and is dominated by momentum. This region is typically a few hundred metres in height and passes upwards into a much higher convective region where buoyancy is dominant. The top of the convective region is defined by the level of neutral density (heightH B ) where the column has a bulk density equal to the surrounding atmosphere. Above this level the column continues to ascend to a heightH T due to its momentum. The column spreads horizontally and radially outwards between heightH T andH B to form an umbrella cloud. Numerical calculations are presented on the shape of eruption columns and on the relationships between the heightH B and the mass discharge rate of magma, magma temperature and atmospheric temperature gradients. Spreading rate of the column margins increases with height principally due to the decrease in the atmospheric pressure. The relationship between column height and mass discharge rate shows good agreement with observations. The temperature inversion above the tropopause is found to only have a small influence on column height and, eruptions with large discharge rates can inject material to substantially greater heights than the inversion level. Approximate calculations on the variation of convective velocities with height are consistent with field data and indicate that columns typically ascend at velocities from a few tens to over 200 m/s. In very large columns (greater than 30 km) the calculated convective velocities approach the speed of sound in air, suggesting that compressibility effects may become important in giant columns. Radial velocities in the umbrella region where the column is forced laterally into the atmosphere can be substantial and exceed 55 m/s in the case of the May 18th Mount St. Helens eruption. Calculations on motions in this region imply that it plays a major role in the transport of coarse pyroclastic fragments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A model for sedimentation from turbulent suspensions predicts that tephra concentration decreases exponentially with time in an ascending volcanic column and in the overlying umbrella cloud. For grain-size distributions typical of plinian eruptions application of the model predicts for thickness variations in good agreement with the exponential thinning observed in tephra fall deposits. The model also predicts a proximal region where fallout from the plume margins results in a more rapid decrease in thickness so that the deposit shows two segments on a thickness versus distance plot. Several examples of deposits with two segments are known. The distance at which the two segments intersect is a measure of eruption column height. The thickness half-distance (∼ equivalent to the dispersal index of Walker) is strongly correlated with column height, but is also weakly dependent on grain-size distribution of the ejecta. For a dispersal index of 500 km2 (the plinian/subplinian boundary of Walker) column heights between 14 and 18 km are calculated. For ultraplinian deposits with D〉50000 km2 column heights of at least 45 km are implied. Model grain-size distributions of the deposits have sorting values comparable to those observed in tephra fall deposits formed from eruption columns in a weak or negligible cross-wind. Median diameter decreases exponentially with distance as is observed. Sorting (σφ) improves with distance as is observed in plinian deposits in a weak wind. However, tephra fall deposits formed in strong winds do not show improved sorting with distance and proximal deposits are typically somewhat better sorted than the model calculations. Differences are attributed to the influence of wind which disperses particles further than predicted in our model and which has an increasing influence as particle size decreases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 57 (1995), S. 422-431 
    ISSN: 1432-0819
    Keywords: Bubble growth ; Decompression ; Magma ; Viscosity ; Volcanic eruptions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Analytical models for decompressional bubble growth in a viscous magma are developed to establish the influence of high magma viscosity on vesiculation and to assess the time-scales on which bubbles respond to decompression. Instantaneous decompression of individual bubbles, analogous to a sudden release of pressure (e.g. sector collapse), is considered for two end-member cases. The infinite melt model considers the growth of an isolated bubble before significant bubble interaction occurs. The shell model considers the growth of a bubble surrounded by a thin shell and is analogous to bubble growth in a highly vesicular magmatic foam. Results from the shell model show that magmas less viscous than ≈109 Pa s can freely expand without developing strong overpressures. The timescales for pressure re-equilibration are shortened by increased ratios of bubble radius to shell thickness and by larger decompression. Time-scales for isolated bubbles in rhyolitic melts (infinite melt model) are significantly longer, implying that such bubbles could experience internal pressures greater than the ambient pressure for at least a few hours following a sudden release of pressure. The shell model is developed to assess bubble growth during the linear decompression of a magma body of constant viscosity. For the range of decompression rates and viscosities associated with actual volcanic eruptions, bubble growth continues at approximately the equilibrium rate, with no attendant excess of internal pressure. The results imply that viscosity does not have any significant role in preventing the explosive expansion of high viscosity foams. However, for viscosities of 〉109 Pa s there is the potential for a ‘viscosity quench’ under the extreme decompression rates of an explosive eruption. It is proposed that the typical vesicularities of pumice of 0.7–0.8 are a consequence of the viscosity of the degassing magmas becoming sufficiently high to inhibit bubble expansion over the characteristic time-scale of eruption. For fully degassed silicic lavas with viscosities in the range 1010 to 1012 Pa s time-scales for decompression of isolated bubbles can be hours to many months.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 12 (1984), S. 11-37 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 450.2007, 7172, E21-, (1 S.) 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Arising from: L. Wilson & J. W. Head III Nature 447, 53–57 (2007); Wilson & Head reply Wilson and Head model kimberlite ascent and eruption by considering the propagation of a volatile-rich dyke. Wilson and ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 402 (1999), S. 37-41 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] During the eruption of the Soufrière Hills volcano, Montserrat (1995–99), and several other dome eruptions, shallow seismicity, short-lived explosive eruptions and ground deformation patterns indicating large overpressures (of several megapascals) in the uppermost few hundred metres ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 411 (2001), S. 1037-1039 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Characteristic features of many porphyritic andesite and dacite lavas are that they are rich in crystals and display a range of disequilibrium features, including reversely zoned crystals, resorption surfaces, wide ranges of mineral compositions and minerals which are not in equilibrium with ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 38 (1991), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Sedimentation from radially spreading gravity currents generated at the top of ascending sediment-laden plumes is described by a model which assumes that sediment is dispersed homogeneously by turbulence in the gravity current, resulting in an exponential decrease in the concentration of sediment with time as particles settle out of the lower boundary of the current. For radial spreading this model predicts a Gaussian distribution of sediment accumulation away from the source with an exponential constant, B, which depends on flow rate, Q, and particle settling velocity, v (B=nv/Q). In the experiments described, sedimentation occurs from gravity currents generated by ascent of buoyant, particle-laden plumes of fresh water in a tank of salty water. The sediment accumulation shows close agreement with the theoretical model, and the Gaussian decay constant, B, can be determined from a maximum in the accumulated mass of sediment per unit distance and from the slope of the line In(S/S0) = -Br2, where r is the radial distance, S is the sediment mass flux per unit area and S0 is the value of S at r=0. Data from the dispersal of volcanic ejecta from a large (c. 24 km high) plinian eruption column in the Azores also show good agreement with the theory, confirming that it is general and independent of scale and the nature of the fluid. The experimental data also show a change in sedimentation behaviour at distances from the source corresponding to the corner of the plume where it diverts into a lateral gravity current and there is an abrupt decrease in vertical velocity. Sedimentation of coarse grain sizes, between the source and the corner, occurs from the inclined plume margins and does not behave as predicted by the theoretical model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...