Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 48 (1987), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We have previously shown that the [3H]saxitoxin binding site of the sodium channel is expressed independently of the [125I]scorpion toxin binding site in chick muscle cultures and in rat brain. In the present work, we studied the development of the sodium channel protein during chemically induced differentiation of N1E-115 neuroblastoma cells, using [3H]saxitoxin binding, [125I]scorpion toxin binding, and 22Na uptake techniques. When grown in their normal culture medium, these cells are mostly undifferen-tiated, bind 90 ± 10 fmol of [3H]saxitoxin/mg of protein and 112 ± 14 fmol of [125I]scorpion toxin/mg protein, and, when stimulated with scorpion toxin and batrachotoxin, take up 70 ± 5 nmol of 22Na/min/mg of protein. Cells treated with dimethyl sulfoxide (DMSO) or hexamethy-lene-bis-acetamide (HMBA) differentiate morphologically within 3 days. At this time, the [3H]saxitoxin binding, the [125I]scorpion toxin binding, and the 22Na uptake values are not very different from those of undifferentiated cells. With subsequent time in DMSO or HMBA, these values continue to increase, a result indicating that the main period of sodium channel expression occurs well after the cells have assumed the morphologically differentiated state. The data indicate that the expression of sodium channels and morphological differentiation are independently regulated neuronal properties, that the attainment of morphological differentiation is necessary but not in itself sufficient for full expression of the sodium channel proteins, and that, in contrast to the chick muscle cultures and rat brain, the [3H]saxitoxin site and [125I]scorpion toxin site appear to be coregulated in N1E-115 cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 40 (1983), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cells of mouse neuroblastoma clone N1E-115 in the confluent phase of growth can catalyze the formation of endogenous protein carboxyl methyl esters, using a protein carboxyl methylase and membrane-bound methyl acceptor proteins. The enzyme is localized predominantly in the cytosol of the cells and has a molecular weight of about 20,000 daltons. Treatment of the cells with dimethylsulfoxide (DMSO) or hexamethylenebisacetamide (HMBA), agents that induce morphological and electrophysiological differentiation, results in a marked increase in protein carboxyl methylase activity. Maximal levels are reached 6–7 days after exposure to the agents, a time course that closely parallels the development of electrical excitability mechanisms in these cells. Serum deprivation also causes neurite outgrowth but does not enhance electrical excitability or enzyme activity. The capacity of membrane-bound neuroblastoma protein(s) to be carboxyl methylated is increased by the differentiation procedures that have been examined. However, the increase in methyl acceptor proteins induced by DMSO or HMBA is the largest and its time course parallels electrophysiological differentiation. In contrast, serum deprivation induced a small increase that reached maximal levels within 24 h. The data suggest that increased protein carboxyl methylation is a developmentally regulated property in neuroblastoma cells and that at least two groups of methyl acceptor proteins are induced during differentiation: a minor group related to morphological differentiation and a major group that may be related to ionic permeabilitys mechanisms of the excitable membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 290 (1981), S. 781-783 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Cells of the adrenergic clone N1E-115 were grown and passaged in Dulbecco's modified Eagle's medium supplemented with 2.5% fetal bovine serum, in an atmosphere of 10% CO2, 90% air, and replated in 3 5-mm plastic tissue culture dishes either with ('differentiated') or without (control) 2% DMSO. ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 254 (1975), S. 121-124 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Mouse neuroblastoma cells in stationary phase of growth display partially developed electrical properties. Addition of the K+ selective carrier valinomycin to these cells causes rapid enhancement of electrical excitability. We suggest that the appearance of molecules with ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0886-1544
    Keywords: latrunculin A ; latrunculin B ; cell shape ; actin organization ; cell growth and division ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The latrunculins are architecturally novel marine compounds isolated from the Red Sea sponge Latrunculia magnifica. In vivo, they alter cell shape, disrupt microfilament organization, and inhibit the microfilament-mediated processes of fertilization and early development. In vitro, latrunculin A was recently found to affect the polymerization of pure actin in a manner consistent with the formation of a 1:1 molar complex with G-actin. These in vitro effects as well as previous indications that the latrunculins are more potent than the cytochalasins suggest differences in the in vivo mode of action of the two clases of drugs. To elucidate these differences we have compared the short- and long-term effects of latrunculins on cell shape and actin organization to those of cytochalasin D. Exposure of hamster fibroblast NIL8 cells for 1-3 hr to latrunculin A, latrunculin B, and cytochalasin D causes concentration-dependent changes in cell shape and actin organization. However, the latrunculin-induced changes were strikingly different from those induced by cytochalasin D. Furthermore, while initial effects were manifest with both latrunculin A and cytochalasin D already at concentrations of about 0.03 μg/ml, latrunculin A caused complete rounding up of all cells at 0.2 μg/ml, whereas with cytochalasin D maximum contraction was reached at concentrations 10-20 times higher. The short-term effects of latrunculin B were similar to those of latrunculin A although latrunculin B was slightly less potent. All three drugs inhibited cytokinesis in synchronized cells, but their long-term effects were markedly different. NIL8 cells treated with latrunculin A maintained their altered state for extended periods. In contrast, the effects of cytochalasin D progressed with time in culture, and the latrunculin B-induced changes were transient in the continued presence of the drug. These transient effects were found to be due to a gradual inactivation of latrunculin B by serum and were used to compare recovery patterns of cell shape and actin organization in two different cell lines. This comparison showed that the transient effects of latrunculin B were fully reversible for the NIL8 cells and not for the mouse neuroblastoma N1E-115 cells.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 22 (1992), S. 99-116 
    ISSN: 0886-1544
    Keywords: microinjection ; second messengers ; cytoskeleton ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have directly evaluated the effects of various intracellular second messengers including cyclic nucleotides, calcium ion, and inositol polyphosphates on shape and motility of differentiating mouse neuroblastoma cells. The messengers were microinjected into cells and the responses of the soma, neurite, and growth cone were monitored using time-lapse video microscopy. Each messenger altered cell shape and motility in a characteristic manner. Cyclic AMP promoted lamellipodial expansion, neurite outgrowth, and motility. The other injected messengers opposed motility. Cyclic GMP caused motile structures to freeze and to retract permanently, while the inhibitory effects of calcium injection were concentrationdependent. Small calcium injections affected specifically actincontaining motile structures which froze and retracted temporarily. Intermediate calcium injections caused a strong contraction at the site of injection in all cells. With large injections, cells retracted long neurites, rounded up, and frequently began vigorous blebbing that continued to cell death. Injections of the inositol polyphosphates 1P3(1,4,5) and IP4(1,4,5,6) mimicked the effects of small calcium injections, as did electrical stimulation that elicited action potentials. The results suggest that in mouse neuroblastoma cells, intracellular CAMP elevation increases cytoskeletal organization and promotes neurite extension perhaps through an enhancement of cell-substratum adhesion. On the other hand, a rise of intracellular cGMP or intracellular calcium interferes directly with the function and organization of the actin-microfilament system. The integrated action of these second messenger systems may, therefore, operate in vivo to allow substances released from neighboring cells to regulate neuronal architecture. © 1992 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Six novel alkaloids that contain a fused tetracyclic pyrido[2,3,4-kl]acridine ring system were purified recently from the Red Sea purple tunicate Eudistoma sp. Evaluation of the effects of these alkaloids on cultured neuroblastoma and fibroblast cells revealed that they possess potent growth regulatory properties, and affect cell shape and adhesion. In mouse neuroblastoma cells, the Eudistoma alkaloids inhibited cell proliferation and induced a process of differentiation during which the cels flattened onto the surface, increased considerably in size, and extended long neurites. In hamster fibroblasts the alkaloids slowed down cell multiplication, and caused an exceptional cell flattening or elongation. In a virustransformed derivative of the hamster fibroblasts the alkaloids restored many aspects of normal cell growth and morphology. In addition, several of the alkaloids mimicked the effects of cAMP analogs on two well-characterized cAMP-mediated processes involved in hepatic glucose metabolism-inhibition of pyruvate kinase (PK) activity and induction of mRNA for phosphoenolpyruvate carboxykinase (PEPCK). All these effects suggest that the Eudistoma alkaloids may act on the cAMP signaling system. However, a single application of these compounds was sufficient to completely block cell multiplication and to induce and sustain differentiation and “reverse transformation”. Furthermore, these effects were not readily reversible following removal of the drugs. In contrast, a single application of agents that mimic or elevate cAMP induced a transient response that waned with time in culture, and the effects induced by constant elevation of cAMP reverse rapidly following drug removal. We propose that the Eudistoma alkaloids cause growth inhibition, differentiation, and reverse transformation by modifying the activity state of proteins that are involved in the regulation of cell shape and adhesion and serve as a target for the cAMP and/or other second messenger systems. © 1993 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Liebigs Annalen 1989 (1989), S. 1171-1188 
    ISSN: 0170-2041
    Keywords: Actin ; Latrunculins ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: Über die Chemie der Latrunculine A und BDas chemische Verhalten von Latrunculin A (1) und B (2) (Lat A und B) unter verschiedenen Reaktionsbedingungen wird beschrieben. Die Kombination der Makrolid-, THP-Lactol- und 2-Thiazolidinon-Ringsysteme führt zu interessanten unerwarteten chemischen Umwandlungen. Die Strukturen zweier neuer, aus Latrunculia magnifica isolierter Lats, 6,7-Epoxy-Lat A (3) und Lat M (4), werden diskutiert.
    Notes: The chemical behavior of latrunculins A (1) and B (2) (Lat A and B) under a variety of reaction conditions is described. The combination of the macrolide, the THP-lactol, and the 2-thiazolidinone rings was found to result in interesting unpredicted chemical transformations. The structures of two new Lats, 6,7-epoxy-Lat A (3) and Lat M (4) isolated from Latrunculia magnifica are discussed.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...