Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The community dynamics of two- and three-fungal species interactions derived for a tessellated agar model system are described. The microcosm allows for the varied prescription of: (1) the number of fungal species interacting; (2) the spatial configuration (patchiness) of the distribution of individuals; (3) the magnitude of scale of spatial occupation by different fungal individuals; and (4) the operation of antagonistic mechanisms based on contact or longer range diffusible components. Stepwise logistic regressions for two-species interactions are used to inform the design of the multi-species interaction tessellations. The model prescribes and investigates complex parameters, such as spatiotemporal heterogeneity and microcosm scale (e.g. population patchiness and crossing times). Data are quantified as proportion, interface class and state transition class of viable fungal species. Spatiotemporal heterogeneity is represented using a novel application of principal component analysis which shows good intuitive agreement with visual assessment of the interaction outcome patterns, and allows effective comparison of the data as a whole. The model demonstrates the influence of the complex and coordinated behaviour of fungal mycelia on community development: interaction outcome of three-species interactions cannot be directly extrapolated from the relevant binary component interactions; interaction outcomes of the multi-species tessellations appears to be neither random nor fully deterministic; a degree of stochasticity is apparent in all tessellation arrangements; the smaller scale tessellations produce more consistent interaction outcome results, probably because experimental scale affects the duration of transient behaviour; and different initial spatial configurations of inoculum (irrespective of inoculum quantity or proportion) influence community development and reproducibility.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Consequences of initial spatial organisation of model fungal communities upon their spatio-temporal development were investigated. Dynamics of prescribed two- and three-species ‘communities’ developing on tessellated agar tile model systems were analysed in terms of literal maps, principal component analyses, or as the proportion of species extant within tiles. It was established that for two-species interactions of equal patch size, large-scale (i.e. many constituent tiles) behaviour could be extrapolated from the relevant small-scale (i.e. pairs of tiles) interactions. However, relative patch sizes (scale) of species within tessellations influenced the times taken by individuals to colonise tiles and, hence, temporal behaviour of the system. Outcome of arrangements involving three species of equal patch size and inoculum potential, and prescribed with different mixing patterns, could not be directly extrapolated by reference to the outcome of pair-wise interactions between constituent species. Three-species arrangements attempt to limit assembly of lateral aggregates of individuals (patch size) and hence any effects of tile colonisation times, so as to reveal effects of nearest neighbour context within the complex community. Such arrangements indicate that spatial configuration of inoculum influences community development and reproducibility. They also suggest that spatial distribution of species affects persistence of individuals, which would otherwise be expected to be eliminated from the system. Two-species interactions appeared generally more reproducible than those comprising three species, and the sensitivity of fungal community development to temperature was not solely associated with influence on colony extension rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...