Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Insulin ; hepatic clearance ; receptor recycling ; receptor-mediated endocytosis ; physiological model ; mouse liver perfusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary After perfusion of mouse livers with A14-125I-insulin for designated intervals, an acid-wash technique was employed to separately measure the surface-bound (Xs) and intracellular (Xi) A14-125I-insulin, as well as intracellular degradation products (Xdeg) of labelled insulin. From the perfusate concentrations (Cp) of A14-125I-insulin, the apparent intrinsic hepatic clearance of labelled insulin at a high dose (0.2 nmol/l) was shown to be 60% smaller than that at a low dose (0.018 nmol/l), indicating that the cellular uptake of insulin is remarkably nonlinear at the concentration range examined. From the time courses of Cp, Xs, Xi and Xdeg, the hepatic insulin disposition was shown to be largely accounted for by the receptor-mediated endocytosis. The observed data at the low dose were analysed to estimate biochemical parameters, (i.e., total receptor number, endocytotic rate constant and intracellular degradation rate constant) according to “receptor-recycling” and “non-receptor-recycling” models, using a computer-aided optimization procedure. The “receptor-recycling” model could not only adequately explain the Cp, Xs, Xi and Xdeg at the low dose, but also predict the Cp at the high dose. On the other hand, a “non-receptor-recycling” model, in which recycling of receptors was not assumed, could also explain the observed data at the low dose, but failed to predict the Cp at the high dose, indicating that the receptor recycling process is necessary to explain the hepatic insulin clearance at high insulin concentrations, at which hepatic insulin clearance should be limited by the rate of receptor recycling. However, the applicability of our model might be limited within the physiologic insulin concentrations, because of the negative co-operativity of insulin-receptor interaction and a high-capacity, non-degradative and more rapidly recycling pathway for receptors that may occur at high concentrations of insulin. In conclusion, we have developed a mathematical model of hepatic insulin clearance and distribution under physiological conditions, including receptor binding, receptor-mediated endocytosis and receptor recycling, which has been so far demonstrated using isolated hepatocytes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 680 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/General Subjects 1073 (1991), S. 442-450 
    ISSN: 0304-4165
    Keywords: (Rat) ; Basolateral endocytosis ; Insulin receptor ; Nonfiltering perfused kidney ; Peritubular clearance
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Crystal Growth 17 (1972), S. 241-248 
    ISSN: 0022-0248
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Crystal Growth 23 (1974), S. 267-274 
    ISSN: 0022-0248
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Crystal Growth 13-14 (1972), S. 297-301 
    ISSN: 0022-0248
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Crystal Growth 115 (1991), S. 112-116 
    ISSN: 0022-0248
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1106
    Keywords: Drug uptake ; Brain capillary endothelial cells ; Tumor cell membrane ; 9L glioma ; P-glyco-protein ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Two weeks after the inoculation of 1.5 × 105 9L glioma cells into the rat brain, the uptake of radiolabelled drugs into the brain and the experimental 9L glioma during the first cerebral circulation was measured with a liquid scintillation counter and analyzed by the method of Oldendorf (1970). The expression of P-glycoprotein, which is known to be associated with the efflux of drugs, was also studied, using anti-P-glycoprotein monoclonal antibody, C-219. Furthermore, the ultrastructure of brain capillaries, tumor vessels, and glioma cells was studied by conventional and immunoelectron microscopy. Sucrose (control), the transport of which through the blood-brain barrier is known to be negligible, accumulated to fivefold higher levels in the tumor than in normal brain. Ranimustine (MCNU), 5-fluorouracil (5-FU), and doxorubicin showed little accumulation in the normal brain, whereas nimustine (ACNU) showed an increased accumulation. MCNU and doxorubicin showed negligible accumulation in the glioma cells despite diffusion into the tumor interstitial space. In contrast, ACNU and 5-FU showed an increased accumulation in tumor cells. The accumulation of 5-FU in the cultured 9L glioma cells was decreased by ATP inhibitors or by low temperature. Although both brain capillary endothelial cells and glioma cell membrane were immunohisto-chemically positive for P-glycoprotein, the tumor vasculature showed low expression of P-glycoprotein. The endothelial cells of tumor vessels ultrastructurally showed increased fenestrations, swelling, and disrupted junctions. Accordingly, it is suggested that hydrophobic drugs such as doxorubicin, being pumped out by P-glycoprotein, do not accumulate in 9L glioma cells as do other lipophilic drugs such as ACNU, or drugs such as 5-FU, which accumulate by a carrier-mediated mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...