Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 53 (2000), S. 701-708 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  The physiological effects of 5-hydroxymethylfurfural (HMF) on Saccharomyces cerevisiae CBS 8066 in the presence and absence of furfural were studied. Experiments were carried out by pulse addition of HMF (2–4 g/l) as well as HMF (2 g/l) together with furfural (2 g/l) to batch cultivations of S. cerevisiae. Synthetic medium with glucose (50 g/l) as carbon and energy source was used. Addition of 4 g/l of HMF caused a decrease (approx. 32%) in the carbon dioxide evolution rate. Furthermore, the HMF was found to be taken up and converted by the yeast with a specific uptake rate of 0.14 (±0.03) g/g · h during both aerobic and anaerobic conditions, and the main conversion product was found to be 5-hydroxymethylfurfuryl alcohol. A previously unreported compound was found and characterized by mass spectrometry. It is suggested that the compound is formed from pyruvate and HMF in a reaction possibly catalysed by pyruvate decarboxylase. When HMF was added together with furfural, very little conversion of HMF took place until all of the furfural had been converted. Furthermore, the conversion rates of both furfural and HMF were lower than when added separately and growth was completely inhibited as long as both furfural and HMF were present in the medium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  Physiological effects of deficiency of pantothenate, a necessary precursor in the synthesis of coenzyme A, were studied using the yeast strain Saccharomyces cerevisiae CBS 8066. Cells were grown on defined media in anaerobic batch cultures with glucose (50 g/l) as the carbon and energy source. Batch cultures containing more than 60 μg/l pantothenate showed no significant differences with respect to growth rates and product yields. However, with an initial pantothenate concentration of 30 μg/l, the average glucose consumption rate was 50% lower than in rich medium and, at even lower concentrations of pantothenate, the culture did not consume all the glucose in the medium. Furthermore, pantothenate deficiency caused the acetate and pyruvate yields to increase and the biomass yield to decrease, compared to the yields in pantothenate-rich medium. The increased acetate formation could be counteracted by initial addition of acetate to the medium, and thereby the glycerol yield could be decreased. An initial addition of acetate of 1.6 g/l to pantothenate-deficient medium (30 μg/l) caused a 35% decrease in glycerol yield and a 6% increase in ethanol yield. Furthermore, the time required for complete conversion of the glucose decreased by 40%. Acetate addition affected the acetate and glycerol yields in a similar way in pantothenate-rich medium (1000 μg/l) also.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...