Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 120-123 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Plasma immersion ion implantation (PIII) is an effective technique for the surface modification of industrial components possessing an irregular shape. We have recently used PIII to treat a real industrial ball bearing to enhance the surface properties of the race surface on which the balls roll. The implantation dose uniformity along the groove is assessed using theoretical simulation and experiments. The two sets of results agree very well, showing larger doses near the center. However, the highest dose is not observed at the bottom or center of the groove, but rather offset toward the side close to the sample platen when the bearing is placed horizontally. The minimum dose is observed near the edge or corner of the groove and our model indicates that it is due to the more glancing ion incidence as a result of the evolution of the ion sheath near the corner. The dose nonuniformity along the groove surface is about 40% based on our experimental data. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 4961-4966 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Plasma immersion ion implantation is an effective surface modification technique. Unlike conventional beam-line ion implantation, it features ion acceleration/implantation through a plasma sheath in a pulsed mode and non-line-of-sight operation. Consequently, the shape of the sample voltage pulse, especially the finite rise time due to capacitance effects of the hardware, has a large influence on the energy spectra of the incident ions. In this article, we present a simple and effective analytical model to predict and calculate the energy distribution of the incident ions. The validity of the model is corroborated experimentally. Our results indicate that the ion energy distribution is determined by the ratio of the total pulse duration to the sample voltage rise time but independent of the plasma composition, ion species, and implantation voltage, subsequently leading to the simple analytical expressions. The ion energy spectrum has basically two superimposed components, a high-energy one for the majority of the ions implanted during the plateau region of the voltage pulse as well as a low-energy one encompassing ions implanted during the finite rise time of the voltage pulses. The lowest-energy component is attributed to a small initial expanding sheath obeying the Child-Langmuir law. Our model can also deal with broadening of the energy spectra due to molecular ions such as N2〈sup ARRANGE="STAGGER"〉+ or O2〈sup ARRANGE="STAGGER"〉+, in which case each implanted atom only carries a fraction (in this case, half) of the total acceleration energy. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...