Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 30 (1982), S. 1258-1260 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Insectes sociaux 47 (2000), S. 1-6 
    ISSN: 1420-9098
    Keywords: Key words: Ants, diet, snakes, termites, Puerto Rico.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary: Dietary habits of the Puerto Rican blindsnake Typhlops platycephalus were studied by analysis of gastrointestinal tract contents and scats. Ant species (the principal prey taxon) were surveyed concurrently with the collection of the blindsnakes to determine what proportion of the species were used as prey. Typhlops platycephalus fed on 14 of 30 ant species found in the field and on two additional ant species that we did not find in the field. Individual snakes often feed on more than one prey species. Adult ants were most commonly found in the gastrointestinal tract and scats, although brood were occasionally encountered. However, laboratory feeding observations suggest that ant brood is more attractive to the snakes. Other prey taxa consumed included termites, mites, and sciarid fly larvae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Video images of bioluminescence were recorded in situ during a 1985 study of the midwater environment of the Monterey Canyon, using a single-person, untethered submersible. Gelatinous organisms were responsible for the most brilliant bioluminescent displays, often exhibiting elaborate kinetics in response to mechanical stimulation. Images of bioluminescent displays recorded from identified organisms are shown and display patterns are described. All bioluminescence emission spectra from captured specimens were blue, with peak emissions between 460 and 494 nm. Image-analysis of recordings of mechanically stimulated bioluminescence revealed source densities between 43 and 175 m-3 and intensities between 2.5 and 37.3 μW sr-1 m-3. The predominant display type at all depths studied (between 100 and 560 m) was luminous secretions. Despite high intensities of mechanically stimulated bioluminescence, no spontaneous light production was recorded in the absence of mechanical stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Numerically and in biomass, the lanternfish Electrona antarctica is the dominant fish in the vast pelagic region of the Southern Ocean bounded on the north by the Antarctic Convergence and in the south by the Antarctic continental shelf. It is an important krill predator, and in turn is important in the diets of flighted and swimming seabirds. Further, it is the southernmost and coldest-dwelling representative of the globally distributed fish family Myctophidae. The present study was undertaken to estimate the species' growth rate and average life span, to incorporate the information in a basic energy budget, and to compare the growth of E. antarctica with more northerly confamilials. Fishes were aged using primary growth increments that were resolved on sagittal otoliths using three sequential techniques: thin-section grinding and polishing, etching, and scanning electron microscopy (SEM). Based on increment width (0.8 to 1.2 μm), continuity, and previous studies on confamilials, the microincrements were assumed to be deposited on a daily basis. Montages of SEM photomicrographs were constructed for each sagitta to allow the daily rings to be counted over the entire life span of 31 individuals representing the entire size range of the species. Results suggest a larval stage of 30 to 47 d and a maximum life span of 3.5 yr, with females growing faster than males in the last 1.5 yr of life and reaching a larger maximum size. Construction of a simple energy budget using the best information available suggests that a surplus of energy is available to support the observed growth rates (0.05 to 0.07 mm d−1). The results of the present study contrast markedly with previous estimates of an 8 to 11 yr maximum age for E. antarctica. These results provide important data addressing the ecology and population dynamics of the pelagic Antarctic ecosystem. E. antarctica is the end-member species in the continuum of vertically migrating myctophids that extend from the equator to the polar circle. Its growth rate is consonant with that of all other myctophid species examined using primary growth increments to determine age. The present study, in conjunction with earlier studies, suggests that growth rates of mesopelagic species are far higher than previously thought.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 106 (1990), S. 13-23 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Eleven mesopelagic fish species from the Weddell/Scotia Sea region of the Antarctic captured during the austral spring 1983, austral fall 1986, and austral winter 1988, were analyzed for proximate composition. Water, ash level, protein, lipid and carbohydrate were examined in relation to depth of occurrence and season. No depth-related trends were evident, primarily due to a low species diversity and minimal differences in those species' vertical distributions. The Antarctic speciesElectrona antarctica showed a significant increase in lipid level (% wet wt and % ash-free dry wt) between spring, fall and winter. The increase may signify an accumulation over the productive season, possibly as a reserve for the winter months. Lipid levels (% wet wt and % ash-free dry wt) were significantly lower in the Weddell Sea specimens examined in this study than in previously examined identical and congeneric species taken during the same season from a more productive near-shore Antarctic region. Comparisons with congeners and confamilials from tropical-subtropical and temperate systems revealed variable trends. The Antarctic speciesE. antarctica andCyclothone microdon had lower water and protein (% wet wt) levels than similar species from tropical-subtropical or temperate regions. Lipid levels of the two species are similar to temperate individuals, while energy levels are slightly higher. In contrast, species of the genusBathylagus show no trends in composition as a function of latitude. Differences in productivity, water-column temperature-structure, and seasonality are important considerations when examining trends among mesopelagic species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 103 (1989), S. 13-24 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The proximate composition of 33 species of mesopelagic fishes collected from the eastern Gulf of Mexico during May–June 1984, July–November 1985 and January 1986 was determined. Water level increased and ash-free dry weight (% dry weight) and protein level (% wet weight) decreased with increasing species' minimum depth of occurrence (that depth below which 90% of a species' population lives). Lipid level (% wet weight or % ash-free dry weight), did not change with species' minimum depth of occurrence. Skeletal ash level (% wet weight) generally decreased with minimum depth of occurrence, whereas carbohydrate level did not change with depth. The variable water level, low lipid level, and high protein level in eastern Gulf of Mexico fishes resulted in a low energy content. These results are generally characteristic of fishes from warm, stable regions of low productivity, such as the eastern North Pacific Gyre. The constant food supply provided by a stable environment may obviate the need for large lipid reserves, in contrast to colder waters at higher latitudes where food availability is seasonal. In addition, the large energy requirements for diel excursions into high-temperature surface waters by the many vertically migrating fishes of this region may influence lipid deposition. The relatively high protein level found in migrators compared to that in non-migrators or weak migrators indicates that locomotory demands influence the percentage of protein found in Gulf fishes. The lack of a positive correlation between protein level and the food availability of a zoogeographic region, suggested in previous studies, is supported here.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The proximate and elemental chemical compositions of 25 species of pelagic decapod and mysid crustaceans collected from the eastern Gulf of Mexico (∼27°N; 86°W, 1984 to 1989) was examined. Water level ranged from 63 to 95% and increased slightly with species' increased depth of occurrence. Protein levels were generally high (1.5 to 18.3% wet wt, WW; 27.6 to 62.4% ash-free dry wt, AFDW) and comprised the primary organic component in the majority of species. Protein, both as % WW and % AFDW, decreased with increased depth of occurrence. In contrast to protein, lipid levels were low (0.5 to 8.9% WW; 5.7 to 60.9% AFDW), and increased with increased depth of occurrence. Carbon and nitrogen best mirrored measured lipid and protein levels when considered as non-protein carbon and non-chitin nitrogen, respectively. C:N ratios increased with increased depth, consistent with changes in protein and lipid with depth. Because of their compositional attributes, resident Gulf of Mexico species have a low total wet weight energy content relative to species from more productive regions. Energy content showed no significant trend with depth. Vertical migration patterns were distinctly different between shallow-and deep-living gulf species and these differences were largely responsible for the relationships observed between composition and depth. In migrating species, the protein and nitrogen content were higher, the lipid and carbon contents and C:N ratio lower, than in non-migrating species. Three deep-living species of the genus Acanthephyra were found to be compositionally atypical, resembling shallow, migrating types rather than other deep-living, non-migratory species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Water, ash, proximate composition (protein, lipid, carbohydrate, hexosamine), and nucleic acid (DNA, RNA) content were measured in premetamorphic larvae of the congrid eel Ariosoma balearicum (Delaroche) collected from the eastern Gulf of Mexico. Specimens ranged from 15.0 to 202.3 mm total length (TL) and 0.0116 to 4.3860 g wet mass (WM). Water content increased linearly with increasing specimen mass over the entire size range; consequently, percent water was uniform and had a mean value of 92.9±1.09% WM. Ash content also increased linearly with specimen mass, but only up to a mass of ≃2.5 g WM (165 mm TL). Ash content in specimens 〉165 mm TL showed only a small increase with mass, suggesting an improved osmoregulatory capability in larger individuals. The absolute amount of all proximate components increased with increasing specimen size, but rates of deposition among the components varied, resulting in different patterns in the relative concentrations of each with growth. Protein dominated the ash-free dry mass (AFDM) throughout development (29 to 59% AFDM); carbohydrate and hexosamine occurred in similar proportions (8 to 24% AFDM). Lipid was a significant proportion of the AFDM in only the smallest individuals. Lipid concentrations decreased initially as mass increased in individuals smaller than ≃0.4 g WM (90 mm TL), indicating a low rate of lipid deposition in small individuals. In specimens 〉90 mm TL, lipid concentrations were uniform and had a mean of 12% AFDM. Trends for biochemical components and nucleic acids suggest that growth of Phase I leptocephali occurs in two subphases (Ia and Ib). Phase Ia is characterized by cellular proliferation, preferential synthesis of protein and carbohydrate relative to lipid, and growth manifested more as increased length rather than increased mass. For A. balearicum, Phase Ia extends from yolk-sac absorption to ≃90 mm TL. In Phase Ib, nucleic acid content levels off, lipid deposition increases, and mass increases exponentially.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 137 (2000), S. 205-214 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Leptocephali grow at extremely high rates (〉1 mm d−1), but, unlike most fish larvae, leptocephali may remain in the plankton as larvae for several months before metamorphosing into the juvenile form. During their planktonic phase, leptocephali accumulate energy reserves in the form of glycosaminoglycans which are then expended along with lipid reserves to fuel metamorphosis. Otolith growth rates were determined using scanning electron microscopy for four species of leptocephali common in the Gulf of Mexico, Paraconger caudilimbatus (Poey, 1867), Ariosoma balearicum (Delaroche, 1809), Gymnothorax saxicola (Jordan and Davis, 1891), and Ophichthus gomesii (Castelnou, 1855). Proximate composition, RNA:DNA ratios and protein growth rates were examined with respect to mass, length and age. The leptocephalus growth strategy was strongly reflected in the growth indices. Mass (Y) in all four species increased with increasing age (X) according to the equation Y = aX b , where a is a species-specific constant and 1.05 〈 b 〈 2.40. The accumulation of acellular mass was evident in protein growth rates and RNA:DNA ratios, and was observed as a shift in increasing size from rapid growth in length to a greater increase in mass with age. These results suggest that the proportion of actively metabolizing tissue declines with size and is replaced by the metabolically inert energy depot: the glycosaminoglycans. Leptocephali can thus grow to large size very rapidly with minimal metabolic penalty, an unusual and successful developmental strategy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 78 (1984), S. 231-237 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Swimming efficiency (the ratio of thrust power required to overcome hydrodynamic drag to net metabolic energy expenditure) was calculated for the vertically migrating euphausiid Euphausia pacifica swimming at speeds of 1–20 cm s−1 and at temperatures of 8° and 12°C. Efficiencies ranged from 0.014 to 2.8% at 8°C and 0.009 to 1.69% at 12°C. A comparison with efficiency in fishes 2–3 orders of magnitude larger in weight (efficiency range ∼10–25%) indicates that locomotion in E. pacifica is far less efficient, a probable result of the organism's small size (x=33.5 mg WW) and multiple-paddle mode of propulsion. Net cost of transport of E. pacifica is three to six times the cost of a hypothetical value for sockeye salmon. Low swimming efficiencies in zooplankton such as E. pacifica are responsible for the underestimation of zooplankton swimming costs. Multiple-paddle propulsion is less efficient than the undulatory mode of fishes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...