Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 112 (1996), S. 197-202 
    ISSN: 1432-1106
    Keywords: Utricular nerve ; Vestibulospinal neuron ; Lateral and medial vestibulospinal tracts ; Vestibular nuclei ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The axonal pathway, conduction velocities, and locations of the cell bodies of utricular nerve-activated vestibulospinal neurons were studied in decerebrated or anesthetized cats using the collision test of orthodromic and antidromic spikes. For orthodromic stimulation, bipolar tungsten electrodes were placed on the utricular nerve and the other vestibular nerve branches were transected. Monopolar tungsten electrodes were positioned on both sides of the upper cervical segments (C2–4), caudal end of the cervical enlargement (C7-T1), and from the lower thoracic to the upper lumbar segments (T12-L3) and were used for antidromic stimulation of the spinal cord. Another monopolar electrode was also placed in the oculomotor nucleus to study whether utricular nerve-activated vestibulospinal neurons have ascending branches to the oculomotor nucleus. Of the 173 vestibular neurons orthodromically activated by the stimulation of the utricular nerve, 46 were second-order vestibulospinal neurons and 5 were third-order neurons. The majority of the utricular nerve-activated vestibulospinal neurons were located in the rostral part of the descending vestibular nucleus and the caudal part of the ventral lateral nucleus. Seventy-three percent of the utricular nerve-activated vestibulospinal neurons descended through the ipsilateral lateral vestibulospinal tract. Approximately 80% of these neurons reached the cervicothoracic junction, but a few reached the upper lumbar spinal cord. Twenty-seven percent of the utricular nerve-activated vestibulospinal neurons descended through the medial vestibulospinal tract or the contralateral vestibulospinal tracts. Those axons terminated mainly in the upper cervical segments. Almost none of the utricular nerve-activated vestibular neurons had ascending branches to the oculomotor nucleus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 20 (1974), S. 285-296 
    ISSN: 1432-1106
    Keywords: Ampullary nerve ; Cat ; EPSP ; IPSP ; Vestibular neuron
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The six ampullary nerves in both labyrinths were separately stimulated by electric pulses in anesthetized cats. Resulting responses in neurons in the vestibular nuclei were recorded intracellularly. Almost all the vestibular neurons showed an EPSP in response to stimulation of the ipsilateral ampullary nerve. These neurons were subclassified as A-, L-, and P-neuron receiving specific projections from the anterior, lateral and posterior canal, respectively. Three fourths of the vestibular neurons recorded from received an IPSP in response to stimulation of the contralateral ampullary nerve. Plane-specific contralateral inhibition was found in most of vestibular neurons; i.e. A-, L-, and P-neuron received IPSP from the contralateral posterior, lateral, and anterior ampullary nerve, respectively. Approximately two thirds of vestibular neurons exhibiting the plane-specific inhibition were recorded in the medial vestibular nucleus. A collision test of impulses in primary afferent fibers were performed during recording of ipsilateral EPSPs produced by strong stimulation of more than one ampullary nerve. No positive evidence was provided for the existence of neural convergence on single vestibular neurons from different ampullary nerves on the same side. It is suggested that the plane-specific contralateral inhibition increase the sensitivity of vestibular neurons during head rotation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 41 (1980), S. 45-53 
    ISSN: 1432-1106
    Keywords: Vertical canal vestibuloocular reflex ; EPSP-IPSP ; Ocular motoneuron
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Synaptic potentials were recorded in identified extraocular motoneurons in anesthetized cats, following stimulation of ampullary nerves of the anterior and posterior semicircular canals. Superior rectus motoneurons received disynaptic EPSPs and IPSPs following stimulation of the two ampullary nerves of the anterior and posterior semicircular canals, respectively. In the inferior rectus motoneurons, the effects of anterior and posterior semicircular canal stimulation were a mirror image of those on superior rectus motoneurons. Inferior oblique motoneurons developed disynaptic EPSPs and IPSPs following stimulation of the ampullary nerves of the contralateral anterior and ipsilateral posterior semicircular canals, respectively. In addition, some inferior oblique motoneurons displayed disynaptic IPSPs following stimulation of the contralateral ampullary nerve of the posterior semicircular canal. In the superior oblique (trochlear) motoneurons, disynaptic EPSPs and IPSPs were recorded after stimulation of the contralateral posterior and ipsilateral anterior semicircular canals, respectively. There was no significant connection between the ampullary nerves of the vertical semicircular canals and motoneurons innervating lateral and medial rectus muscles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Axonal branching ; Vestibulo-ocular ; Vestibulo-collic ; Neck motoneurons ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Unit activities of 148 secondary vestibular neurons related to the posterior semicircular canal were recorded extracellularly in anesthetized cats. Axonal projections of these neurons were examined by their antidromic responses to stimulation of the excitatory target motoneurons of the contralateral (c-) inferior rectus muscle (IR) and bilateral (bi-) motoneuron pools of longus capitis muscles, neck flexors, in the C1 segment (C1LC). The neurons were classified into 4 groups according to their axonal projections. The first group of neurons, termed vestibulo-oculo-collic (VOC) neurons, sent axon collaterals both to the c-IR motoneuron pool and to the c-C1LC motoneuron pool. The majority of them (72%) were located in the descending nucleus. The second group of neurons were termed vestibuloocular (VO) neurons and sent their axons to the c-IR motoneuron pool but not to the cervical cord. Most of them (86%) were located in the medial nucleus. The third group of neurons, termed vestibulo-collic (contralateral) (VCc) neurons, sent axons to the cC 1LC motoneuron pool via the contralateral ventral funiculus but not to the oculomotor nuclei. They were mostly (75%) found in the descending nucleus. The last group of neurons were vestibulo-collic (ipsilateral) (VCi) neurons, which gave off axons to the ipsilateral (i-) C1LC motoneuron pool via the ipsilateral ventral funiculus but not to the oculomotor nuclei. One of them also sent an axon collateral to the c-C1LC motoneuron pool. The majority of them (74%) were located in the ventral part of the lateral nucleus. It was also observed in some of the VOC and VCi neurons that they produced unitary EPSPs in the c-C1LC and i-C1LC motoneurons, respectively. Their synaptic sites were estimated to be on the cell somata and/or proximal dendrites of the motoneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 32 (1978), S. 377-388 
    ISSN: 1432-1106
    Keywords: Posterior canal nerve ; EPSP ; IPSP ; Extraocular motoneurons ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the anesthetized cat, the posterior canal nerve (PCN) was stimulated by electric pulses and synaptic responses were recorded intracellularly in the three antagonistic pairs of extraocular motoneurons. Pure reciprocal effects were obtained in the motoneurons innervating the antagonistic pair of ipsilateral oblique muscles and the antagonistic pair of contralateral vertical rectus muscles. These responses consisted of low threshold disynaptic excitatory postsynaptic potentials (EPSPs) in either the contralateral superior oblique (c-SO) (trochlear) or contralateral inferior rectus (c-IR) motoneurons and of disynaptic inhibitory postsynaptic potentials (IPSPs) in either the ipsilateral inferior oblique (i-IO) or ipsilateral superior rectus (i-SR) motoneurons. In addition, disynaptic IPSPs were also found in (i-SO) motoneurons. Mixtures of low threshold (dior trisynaptic) EPSPs and IPSPs were found in all other extraocular motoneurons except for the contralateral lateral rectus (c-LR) motoneurons. These results may afford a basis for the characteristic eye movements induced by vertical canal nerve stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 53 (1983), S. 29-35 
    ISSN: 1432-1106
    Keywords: Development ; Kitten ; Vestibul arneurons ; Abducens motoneurons ; Vestibulo-ocularre flex ; Commissural inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Field potentials and postsynaptic potentials were recorded in the vestibular and abducens nuclei and neurons following vestibular nerve stimulation in anesthetized newborn kittens (within 72 h after birth). Stimulation of the ipsilateral vestibular nerve evoked an initial P wave and an N1 field potential in the vestibular nuclei. No N2 potential was evoked. Latencies of the peak of the P wave, the onset and the peak of the N1 potential were 0.99±0.16 ms, 1.66±0.18 ms, and 2.51±0.23 ms, respectively. Ipsilateral vestibular nerve stimulation evoked monosynaptic excitatory postsynaptic potentials (EPSPs) and polysynaptic inhibitory postsynaptic potentials (IPSPs) in vestibular nuclear neurons. Stimulation of the contralateral vestibular nerve evoked polysynaptic IPSPs in vestibular nuclear neurons. In abducens motoneurons, ipsilateral vestibular nerve stimulation evoked monosynaptic EPSPs and disynaptic IPSPs; contralateral vestibular nerve stimulation produced disynaptic EPSPs. We conclude that short circuit pathways of the vestibul-ovestibular and vestibulo-ocular reflex arc are present in the kitten already at birth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 115 (1997), S. 381-386 
    ISSN: 1432-1106
    Keywords: Key words Central cervical nucleus ; Vestibular projection ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The central cervical nucleus (CCN) of the cat receives input from upper cervical muscle afferents, particularly primary spindle afferents. Its axons cross in the spinal cord, and while in the contralateral restiform body give off collaterals to the vestibular nuclei. In order to study the connections between CCN axons and vestibular neurons, we stimulated the area of the CCN in decerebrate cats while recording intra- or extracellularly from neurons in the contralateral vestibular nuclei. CCN stimulation evoked excitatory postsynaptic potentials (EPSPs) or extracellularly recorded firing in the lateral, medial and descending vestibular nuclei. The latency of EPSPs (mean 1.6 ms) was on average 0.4 ms longer than the latency of antidromic spikes evoked in the CCN by stimulation of the contralateral vestibular nuclei (mean 1.2 ms), demonstrating that the excitation was typically monosynaptic. The results provide further evidence that the CCN is an important excitatory relay between upper cervical muscle afferents and neurons in the contralateral vestibular nuclei.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 126 (1999), S. 410-416 
    ISSN: 1432-1106
    Keywords: Key words Vestibulocollic reflex ; Saccular nerve ; Utricular nerve ; Sternocleidomastoid motoneuron ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Connections from the otolithic organs to sternocleidomastoid (SCM) motoneurons were studied in 20 decerebrate cats. The electrical stimulation was selective for the saccular or the utricular nerves. Postsynaptic potentials were recorded from antidromically identified SCM motoneurons; these muscles participate mainly in neck rotation and flexion. Partial transections of the brainstem at the level of the obex were performed to identify the possible pathway from the otolithic organs to the SCM motoneurons. Saccular or utricular nerve stimulation mainly evoked inhibitory postsynaptic potentials (IPSPs) in the ipsilateral SCM motoneurons. Some of the sacculus-induced IPSPs were preceded by small-amplitude excitatory PSPs (EPSPs). The latencies of the PSPs ranged from 1.8 to 3.1 ms after saccular nerve stimulation and from 1.7 to 2.8 ms after utricular nerve stimulation, indicating that most of the ipsilateral connections were disynaptic. In the contralateral SCM motoneurons, saccular nerve stimulation had no or faint effects, whereas utricular nerve stimulation evoked EPSPs in about two-thirds of neurons, and no visible PSPs in about one-third of neurons. The latencies of the EPSPs ranged from 1.5 to 2.0 ms, indicating the disynaptic connection. Thus, the results suggest a difference between the two otolithic innervating patterns of SCM motoneurons. After transection of the medial vestibulospinal tract (MVST), saccular nerve stimulation did not evoke IPSPs at all in ipsilateral SCM motoneurons, but some (11/40) neurons showed small-amplitude EPSPs. Most (24/33) of the utricular-activated IPSPs disappeared after transection, whereas the other 9 neurons still indicated IPSPs. In the contralateral SCM motoneurons, no utricular-activated EPSPs were recorded after transection. These MVST transection results suggest that most of the otolith-SCM pathways are located in the MVST at the obex level. However, the results also suggest the possibility that other otolith-SCM pathways exist at the obex level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 32 (1978), S. 1-17 
    ISSN: 1432-1106
    Keywords: Fastigial nucleus ; Fastigiospinal neurons ; Motoneurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Neurons in the cat fastigial nucleus that project to the upper cervical spinal segments (fastigiospinal neurons) were fired by antidromic stimulation of the contralateral spinal cord. Dye ejection from the recording electrode was used to show that most neurons were in the rostral half of the fastigial nucleus. 2. Fastigiospinal neurons can be excited and/or inhibited by stimulation of forelimb and hindlimb nerves and by stimulation of the vestibular nerve. These inputs converge on many neurons. 3. Antidromic microstimulation was used to trace fastigiospinal axons to the vicinity of motor nuclei in C2-C3. 4. The rostral fastigial nucleus was stimulated in preparations with the medial longitudinal fasciculus transected by a wide lesion that impinged on the medial reticular formation in the caudal medulla, to eliminate some potential axon reflexes. Short-latency EPSPs were recorded in some trapezius and biventer-cervicis motoneurons. In many cases there was little or no occlusion between these EPSPs and others evoked by stimulation of the vestibular nerve ipsilateral to the motoneurons. 5. Movement of the stimulating electrode and placement of this electrode lateral to the fastigial nucleus show that the zone from which low threshold EPSPs can be evoked is localized. 6. Latency measurements and lack of temporal facilitation with double shocks suggest that the EPSPs are monosynaptic. The evidence suggests that they are caused by fastigiospinal fibers terminating on motoneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2133
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Summary Background There are seven well-known lysosomal storage diseases that produce angiokeratoma corporis diffusum clinically. β-Mannosidosis (MANB1; OMIM248510), first reported in humans in 1986, is a rare hereditary lysosomal storage disease caused by a deficiency of the enzyme β-mannosidase. Since then, 13 cases of β-mannosidase deficiency in ten families have been described. A human β-mannosidase mutation has been reported only by Alkhayat et al. in 1998. Objectives To clarify its pathogenesis we did electron microscopic, biochemical and molecular biological investigations of a Japanese patient with β-mannosidosis. Methods Ultrastructural analyses, enzyme assays, cell culture and mRNA and genomic DNA were sequenced to find mutations in the β-mannosidase gene. Results Electron microscopy of skin biopsy specimens from the patient showed cytoplasmic vacuolation of lysosomes in blood and lymph vessels, endothelial cells, fibroblasts, secretory portions of eccrine sweat glands, neural cells and basal keratinocytes in the epidermis. This vacuolation was also observed in cultured keratinocytes and fibroblasts. Assays of seven enzyme activities in plasma and cultured skin fibroblasts showed a marked decrease of β-mannosidase activity. Sequencing the β-mannosidase cDNA revealed a four-base (ATAA) insertion between exons 7 and 8, resulting in a frameshift at codon 321 and termination at codon 325. Analysis of the patient's genomic DNA revealed a novel homozygous A(+1)→G splice site mutation in intron 7. Conclusions To our knowledge, this is the first case of β-mannosidosis reported in Japan and the second report in which a gene mutation is identified. The biological importance of β-mannose moieties in glycoproteins in basal keratinocytes is suggested.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...